

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

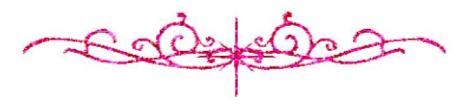
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

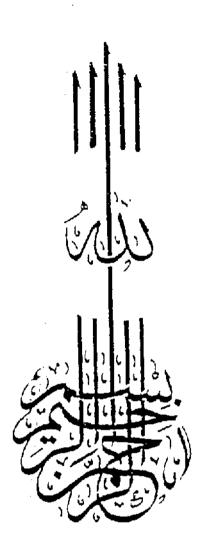
يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

بعض الوثائق

الأصلية تالفة





بالرسالة صفحات

لم ترد بالأصل

Institute of GraduateStudies and Research Alexandria University

OPTIMIZATION OF BIOGAS PRODUCTION FROM SOME INDUSTRIAL ORGANIC WASTES IN EGYPT

Thesis

Submitted in Partial Fulfillment For the Degree of M.Sc. in Environmental Studies

By **Sabry Farag Ismail Salem**

B. Sc. Agricultural. (Ag. Engineering)
1979

Department of Environmental Studies Institute of Graduate Studies and Research University of Alexandria

SUPERVISORS

Dr. Salah Hassona

Associate Professor of Microbiology Department of Environmental Studies, Institute of Graduate Studies and Research Alexandria University

Dr. Hesham Zaki Ibrahim Associate Professor of Pesticide Chemistry, Department of Environmental Studies, Institute of Graduate Studies and Research Alexandria University

Dr. Ibrahim Abd Elbaki El-Aasser lecture, Department of Environmental Studies, Institute of Graduate Studies and Research Alexandria University

Optimization of biogas production from some industrial organic wastes in Egypt.

	Approved	
		•••••
•		

Date / /1997 Alexandria, Egypt.

ACKNOWLEDGMENT

I WOULD LIKE TO EXPRESS MY GREAT APPRECIATION TO DR. SALAH HASSOUNA, ASSOCIATE PROFESSOR OF MICROBIOLOGY, DEPARTMENT OF ENVIRONMENTAL STUDIES, INSTITUTE OF GRADUATE STUDIES AND RESEARCH, ALEXANDRIA UNIVERSITY, SUGGESTING THE PROBLEM, CONTINUOS SUPERVISION AS WELL AS THE CONTENTS AND STEPS OF THE WORK, USEFUL HELP DURING THE PREPARATION OF THIS WORK, AND REVISION OF THE MANUSCRIPT

I AM INDEBTED AND MOST GRATEFUL TO DR. HESHAM

ZAKI IBRAHIM, ASSOCIATE PROFESSOR OF PESTICIDE

CHEMISTRY, DEPARTMENT OF ENVIRONMENTAL STUDIES,

INSTITUTE OF GRADUATE STUDIES AND RESEARCH,

ALEXANDRIA UNIVERSITY, FOR HIS SUPERVISION, GUIDANCE,

ENCOURAGEMENT, AND REVISION OF THE MANUSCRIPT

I WISH TO EXPRESS MY SINCERE THANKS TO DR. IBRAHIM EL-ASSAR, LECTURE. DEPARTMENT OF ENVIRONMENTAL STUDIES, UNSTITUTE OF GRADUATE STUDIES AND RESEARCH, ALEXANDRIA UNIVERSITY, FOR HIS SUPERVISION, REVISION OF THE MANUSCRIPT ENCOURAGEMENT, AND HIS ASSISTANCE DURING THE PREPARATION OF THESIS.

I WOULD LIKE TO EXPRESS MY GRATITUDE TO DR.

MOKHTAR IBRAHIM YOUSEF, FOR GREAT HELP, AND

ASSISTANCE.

I WISH TO THANK AGRC. ENG. EMAN IBRAHIM AND DEPARTMENT OF ENVIRONMENTAL STUDIES, INSTITUTE OF GRADUATE STUDIES AND RESEARCH, ALEXANDRIA UNIVERSITY, FOR THEIR ASSISTANCE.

CONTENTS

<u>Ch</u>	<u>hapter</u>		Page
1	Intro	duction	1
2	Aim (of the work	4
3		w of leterature	5
	3.1. Ana	nerobic fermentation as a tool for biogas production and waste	5
	trea	atment technology.	
	3.2. Bio	mass Fuels.	8
	3.3. Che	emical analysis in relation to the nutritive value of organic industrial	8
	was	stes to microorganisms.	
	3.4. Th	e microbiology of anaerobic bacteria.	13
	3.4.1.	Functional groups of bacteria	13
	3.4.1.1.	Hydrolysis	15
	3.4.1.2.	Acidogenesis	16
		Acetogenesis	17
		Methanogenesis	17
		Environmental Factors Affecting Biogas Production	18
		Temperature	18
		Hydrogen ion concentration	20
	3,5.3.	C/N ratio	21
		Loading rate	22
		Volatile acids	23
		The inoculum / substrate ratio (starter / substrate ratio).	23
	3.5.7.	Inhibitors	25
	3.5.8.	Particle size	26
	3.5.9.	Stirring	27
	3.5.10.	Operational system	28
	3.5.11	Hydraulic retention time (HRT)	29
4	Materia	als and Methods	30
	4.1.	Materials.	30
	4.1.	Agro-industrial wastes.	30
	4,1,1,1,	Solid wastes	30
	4.1.1.2.	Cheese whey	30
	4.1.2.	Cow dung	32
	4.1.3.	Reactors	32
	4.2.	Methods	32
	4.2.1.	Chemical analyses	32
	4.2.1.1.	Total Solids (TS)	32
	4.2.1.2.	Total Volatile Solids (TVS)	35
	4.2.1.3.	Organic matter and organic carbon (OC)	
	4.2.1.4.	Total Nitrogen (N)	
	4.2,1,5,	Hydrogen ion concentration (pH)	
	4.2.2.	Gas determination	
	4.2.2.1.	Gas production	
		Methane and carbon dioxide content	35
	4.2.3.1.	Cellulolytic activity	36

Chapter		Page
4.3. E	xperimental procedures	36
4.3.1. E	Evaluation of biogas generation from agro-industrial wastes	36
4.3.2.	Studying the effect of Inoculum substrate ratio on the biogas	38
ŗ	production and substrate degradation.	
4.3.3. I	Biogas production from whey	38
	tudying the effect of hydraulic retention time (HRT) on the biogas production	38
	ssessment of the anaerobically digested slurry as a fertilizer and collisioner	39
5 - Result	s and Discussion	42
5.1. A	Agro-industrial Wastes.	42
5.1.1. S	urvey of some agro-industrial wastes in Alexandria.	42
5.1.2. Cl	nemical characteristics of wastes	44
5.2. B	iogas from agro-industrial wastes:	47
5,2,1. D	aily biogas / methane production.	47
	he accumulative amount of biogas and methane production from	55
the	agro-industrial wastes	
5,2,3, A	nalysis of production rate of biogas and methane from the	61
differ	rent wastes used	
5.2.4. Ch	ange in total and volatile solids.	65
5.2.5. Ce	llulolytic activities (CA).	67
5.3. Eff	fect of different inoculation ratios on the anaerobic fermentation	69
proce		
	fect of the different inoculation ratios on the biogas production.	69
	fect of different inoculation ratios on the cumulative biogas	74
	uction	
	fect of different inoculation ratio on volatile solids removal and	76
_	s production.	
5.3.4. Ch	angs in total and volatile solids.	78
5.3.5. Eff	fect of the different ioculation ratios on cellulolytic activity.	83
	ect of different inoculum ratios on the degradation rates of the industrial wastes used:	85
	mato waste.	85
5.4.2. Ap	ple waste.	85
5.4.3. Pea	•	89
	tichoke waste	89
5.4.5. Ok	ra waste	92
	ocoa waste	92
	ange waste	95
	tato waste	95
	ango waste	9 5

<u>Chapter</u>	<u>Page</u>
5.5. Biogas production from anaerobic treatment of cheese whey using upflow fixed bed reactor.	99
 5.6 Assessment of the anaerobically digested slurry as a fertilizer and soil conditioner. 5.7. Economic feasibility of applying biogas units 	105 111
Summary References	111
Appendics Arabic summary	

LIST OF FIGURES

Figure		Page
No 1	Metabolic stages in the anaerobic digestion of wastes.	14
2	Laboratory anaerobic batch reactor for biogas production	33
3	Laboratory upflow fixed bed reactor for biogas production	34
4	Schematic diagram illustrating Orsat's apparatus	37
5 (a)	Daily biogas & methane production from anaerobic fermentation of cow	48
- N-2	dung in a 2 liter fermentor (control treatment).	
5 (b)	Daily yield of biogas & methne from 21 anaerobic fermentor.	49
	A- Apple waste	
	B- Mango waste	
645	C- Orange waste	
5 (c)	Daily yield of biogas & methne from 21 anaerobic fermentor of	50
	A- Tomato waste	
	B- Potato waste	
5 (1)	C- Pea waste	
5 (d)	Daily yield of biogas & methne from 21 anaerobic fermentor	51
6 (a)	Accumulative mounts of biogas & methane produced from anaerobic fementation of cow dung(control treatmenr)	56
6(b)	Accumulative mounts of biogas & methane produced from anaerobic	57
	fementation (2 liter fermentor) of	
	A- Apple waste	
	B- Mango waste	
	C- Orange waste	
5(c)	Accumulative mounts of biogas & methane produced from anaerobic	58
, ,	fementation (2 liter fermentor) of	
	A- Tomato waste	
	B- Potato waste	
	C- Pea waste	
6(d)	Accumultative mounts of biogas & methane produced from anaerobic	59
	fementation (2 liter fermentor) of	
	A- Artichoke waste	
	B- Okra waste	
	C- Cocoa waste	
7	Total biogas and methane production after obic fermentation of agro-	60
	industrial wastes	
8	Degradation percentagos of total and volatile solids of different wastes	66
	after 45 day of anaerobic difestion	
9	Effect of anaerobic fementation of different wastes on cellulolytic activity	68
10	Effect of different inoculation ratios on biogas production from anaerobic	70
	fementation of agro-industrial wastes	
11(a)	Effect of inoculation ration on accumulative biogas production from	75
(4)	araerobic fementation of apple waste during 45 days	
	A- Apple B- Mango	
	C- Orange	