

Ain Shams University
Faculty of girls for
Arts, Science and Education
Mathematics Department

GEOMETRIC SOLUTIONS OF PHYSICAL PROBLEMS

A THESIS

SUBMETTED TO

MATHEMATICES DEPARTMENT

FAUCLTY OF GIRLES, AIN SHAMS UNIVERSITY

IN PARTIAL FULIFLLEMENTOF THE REQIURMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE(M. Sc.)

ВΥ

ZAINAB ABDUL-HAMIED ABDUL-ZAHER ISMAIL

SUPERVISED BY

Prof. Safaa S. Bishay

Prof. Mamdouh I. Wanas

Prof. of Applied Mathematics

Prof. of Relativistic Cosmology

Mathematics Department

Astronomy Department

Faculty of Girls

Faculty of Science

Ain Shams University

Cairo University

2019

Ain Shams University
Faculty of girls for
Arts, Science and Education
Mathematics Department

M. Sc. THESIS IN MATHEMATICS

Title of Thesis:

Geometric Solutions of Physical Problem

The Supervisors

Prof. Safaa S. Bishay

Prof. of Applied Mathematics

Mathematics Department

Faculty of Girls

Ain Shams University

Prof. Mamdouh I. Wanas

Prof. of Relativistic Cosmology

Astronomy Department

Faculty of Science

Cairo University

Acknowledgment

Thanks God. The author would like to express her gratitude to everyone who support her through out the reserch journey.

The author thanked *Professor Mamdouh I. Wanas* for suggesting the point of research, helpful guidance and continuous support during his supervision.

The author expresses her sincere gratitude for *Professor Safaa S.*Bishay for his encouragement.

Special thanks to *Professor Samia S. Elazab* for her continuous supporting and encouragements.

The author would like to send her deep thanks to *Dr. Mona M. Kamal* for her comments and her endless help during the period of the research.

Finally, deep thanks to all members of the Egyptian Relativity Group (ERG).

TO MY LOVELY BOSBOS

Contents

A	bstra	ct		V
Sı	ımma	ary		vi
Li	st of	Figure	es	xi
Ι	The	Ahar	onov-Bohm Effect	
	I.1	Introd	uction	1
	I.2	Histor	y and Basic Physical preliminaries	2
		I.2.1	The Photoelectric Effect	2
		I.2.2	Duality Nature of Particles	2
		I.2.3	Walter Franz Discovery	4
		I.2.4	The Refractive Index in Electron Optics and its Math-	
			ematical Form	5
		I.2.5	The Ahronov-Bohm (A-B) Effect	7
	I.3	Exper	imental Evidences for The A-B Effect	9
		I.3.1	Möllenstedt and Düker Experiment 1956	9
		I.3.2	Chambers Experiment 1960	10
		I.3.3	Möllenstedt-Bayh Experiments 1961-1962	13

		I.3.4	Tonomora et al Experiments(1982-1986)	14
		I.3.5	Proposed Experiments	18
	I.4	Discus	sion and Aim of the Present Work	19
II	The	Math	ematical Treatment	
	II.1	Introd	uction	21
	II.2	A Brie	f Account of Riemannian Geometry	21
		II.2.1	Derivation of Curve Equations in Riemannian Geometry	23
	II.3	Maxwe	ell's Electromagnetic Field Theory	30
		II.3.1	Gauge Nature of the Electromagnetic Field	31
		II.3.2	Motion in An Electromagnetic Field and Lorentz force	33
		II.3.3	The Magnetic Flux Through a Closed Surface	34
		II.3.4	Maxwell's Equations in a Tensorial Form	35
	II.4	Classic	eal Equation of Motion and the A-B Effect	36
	II.5	The Q	uantum Treatment	37
	II.6	Discus	sion and Criticism	40
II]	IA S	uggest	ted Geometric Treatment of the Ahronov-Bohm	
	Effe			
	III.1	Introd	uction	42
	III.2	The E	inestin-Maxwell Theory	43
			Field Equations	43
			Equations of Motion	44
			The motion of a charged test particle	45
	III.3		ski and Equations of Motion	48
			ization of the New Equations of Motion	50

III.5 Discussion and Concluding Remarks	 53
References	55

Abstract

In the present Thesis, we have chosen a phenomena, known in the literature as the Aharonov-Bohm effect, to be treated geometrically. The problem is that this phenomena is widely known as a pure quantum effect. A new equations of motion of a charged test particle is derived. The method used to derive this equation is known in the literature as Bazanski-method. This method and the conventional method are known in the literature to give identical results in Riemannian geometry. In the present thesis, we have used the Bazanski method, but in Riemannian geometry modified by a vector field. The thesis shows that, in this case we get a new path equation, which can account for the Aharonov-Bohm effect, geometrically.

Summary

The current thesis contains Mainly three Chapters:

Chapter I: The Aharonov-Bohm Effect.

This Chapter reviews briefly historical background of the Ahronov-Bohm, A-B, effect. We give the first steps of theoretical predictions of this effect, <u>qualitatively</u>. Also, we give a brief account on Aharonov and Bohm contribution of interpreting the new phenomenon <u>qualitative</u> and <u>quantitative</u>. The experimental evidence of the phenomenon is mentioned here. These experiments confirm this phenomenon <u>qualitative</u> and <u>quantitative</u> too. Discussion, and the aim of the present work are given at the end of this Chapter.

Chapter II: The Mathematical Treatments

This Chapter shows the difference between the two main points of view which dealt with the A-B effect, in the first view, we briefly reviewed the explanation of Maxwell theory of the effect which gives a zero result. In the second view, we explain the studied phenomenon using Schrödinger equation, which gives a direct evidence with the experimental result. We also clarify the contradiction between the above two methods, furthermore, we show the main reason of why the phenomenon dealt as a pure quantum effect. Discussion and criticism are given at the end of this Chapter.