

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

L-Asparaginase from yeast and its potential as anti-cancer: optimization of production, purification, and medical applications

THESIS

For the Degree of Master in Science
(Microbiology)

Prepared by

Ahmed Mahmoud Ibrahim Ahmed Shabana

B.Sc. in Microbiology and Chemistry, 2016

Microbiology Department Faculty of science Ainshams University (2020)

قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا عِلْمَ الْحَكِيمُ إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ الْحَكِيمُ

(سورة البقرة: الآية ٣٢)

Acknowledgement

All praise are to Allah and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.

I am deeply grateful to my supervisor, **Prof. Dr.Yousseria Mohamed Hassan Shetaia**, Professor of Microbiology (Mycology), Head of Microbiology department, Faculty of Science, AinShams University for her kind supervision, continuous encouragement, much valued guidance, her detailed review, valuable scientific advices, her constructive criticism and comments during all stages of the thesis.

I am deeply grateful to **Prof. Dr. Mona Abdel Tawab Esawy**, Professor of Microbiology, chemistry of natural and microbial products department, National Research Center(NRC), for her kind supervision, appreciable scientific advices, her continuous encouragement as well as her constructive comments during all stages of the thesis.

I am greatly indebted to **Dr. Omar Alfarouk Rabiee**,Lecturer of Microbiology, Microbiology department, Faculty of Science, Ain Shams University for his guidance and continued assistance during supervision of this work.

I am deeply grateful to Prof. Dr. **Nayera Ahmed Abdel Wahed**, Professor of Microbiology, chemistry of natural and microbial products department, National Research Center, for her kind supervision, appreciable scientific advices, her continuous encouragement as well as her constructive comments during all stages of the thesis.

I am greatly indebted to **Dr. Mohamed Elsayed**, researcher in the department of chemistry of natural and microbial products, National Research Center, for valuable advice and his friendly help.

Thanks, are also extended to the members of the Microbiology department, Faculty of Science, Ain Shams University, for their cooperation and help which enable this work to be accomplished and I offer my regards and blessing to all of those who supported me in any respect during the completion of the work.

Contents	
Contents	Page
List of Tables	I-III
List of Figures	IV-VII
List of Abbreviations	VIII-X
1. Introduction	1-4
Aim of work	5
Abstract	6-8
2. Review of literature	9
2.1. Enzymes	9
2.2. Historical background of L-asparaginase	9-10
2.3. Mechanism of action of L-asparaginase	10
2.4. Sources of L-asparaginase	10
2.4.1. Bacteria as a source of L-asparaginase	١.
2.4.2. Fungi as a source of L-asparaginase	11
2.4.3. Yeast as a source of L-asparaginase	17
2.4.4. Actinobacteria as a source of L-asparaginase	17
2.4.5. Algae as a source of L-asparaginase	١٣
2.4.6. Plants as a source of L-asparaginase	١٣
2.5. Industrial production of L-asparaginase	١٣
2.5.1. Production of L-asparaginase using submerged fermentation	١٤
(SmF)	
2.5.1. Production of L-asparaginase using submerged fermentation (SmF)	10
2.6. Purification of L-asparaginase	17-19
2.7.Molecular weight of the purified L-asparaginases	۲.
2.8. Kinetic parameters of the microbial L□asparaginase	71
2.9.Characterization of the purified L-asparaginase	7 7
2.9.1. Effect of pH on the purified L-asparaginase	77
2.9.2. Effect of temperature on the purified L-asparaginase	7 7
2.9.3. Effect of the effector molecules on the purified L-asparaginase	77
2.10. Immobilization of L-asparaginase	25-26
2.11. Applications of L-asparaginase	77
2.11.1. Role of L-asparaginase as a therapeutic agent	77
2.11.1.1. Role of L-asparaginase in the treatment of ALL	7 7
2.11.1.2. Pharmaceutical mechanism of L-asparaginase in the	. .
treatment of ALL	7.7
2.11. 2. Role of L-asparaginase in food industry	۲۹
2.11.3. Role of L-asparaginase in development of biosensors	۲٩

CONTENTS

2.11.4. Role of L-asparaginase in amino acids metabolism	٣.
2.11.5. Role of L-asparaginase as anti-oxidant agent	٣١
2.11.6. L-Asparaginase in the commercial market	٣١
3. Materials and Methods	٣٢
3.1. Materials	٣٢
3.1.1. Microorgnisms	٣٢
3.1.2. Chemicals and buffers	٣٢
3.1.3. Tissue Culture Materials	32-34
3.1.4. Media	٣٤
3.1.4.1. Isolation medium	٣٤
3.1.4.2. Screening medium	٣٤
3.1.4.3. Corn meal agar (CMA) medium	٣٤
3.1.4.4. Fermentation media	٣٥
3.2. Methods	٣٦
3.2.1. Isolation of yeast isolates from different samples	٣٦
3.2.1.1. Isolation of yeast isolates from yoghurt, soil, and honey	٣٦
samples	, ,
3.2.1.2. Isolation from sugar-cane bagasse sample	٣٦
3.2.1.3. Isolation from banana peel sample	٣٦
3.2.1.4. Isolation from grape sample	٣٦
3.2.2. Maintenance of yeast isolates	٣٧
3.2.3. Determination of the pathogenicity of the yeast isolates	٣٧
3.2.3.1. Growth of the yeast isolates at 37°C	٣٧
3.2.3.2. Blood agar assay	٣٧
3.2.4. Qualitative assay of L-asparaginase	٣٨
3.2.5. Inoculum preparation and submerged fermentation	٣٨
3.2.6. Quantitative assay of L-asparaginase	38-39
3.2.7. Determination of pH	٣9
3.2.8. Determination of protein content	٣9
3.2.9. Identification of yeast isolates	٤٠
3.2.9.1. Morphological identification	٤٠
3.2.9.1.1. Corn meal agar description	٤٠
3.2.9.2. Molecular identification of the most potent yeast isolate	40-41
isolated from banana peel	70-71
3.2.9.3. Identification of other yeast isolates using Vitek 2 system	41-42
3.2.10. Optimization of the fermentation medium for the production of	
L-asparaginase by <i>Kodamaea ohmeri</i> ANOMY using the classical one	٤٣
factor-at-a time method (OFAT)	
3.2.11.Optimization of the physical factors for the production of L-	٤٣
asparaginase by <i>Kodamaea ohmeri</i> ANOMY using (OFAT) method	

CONTENTS

3.2.11.1. Inoculum age	٤٤
3.2.11.2. Incubation temperature	źź
3.2.11.3. Agitation speed	źź
3.2.12.Optimization of the production of L-asparaginase by <i>Kodamaea</i>	٤٥
ohmeri ANOMY using experimental statistical analysis design	ξ.0
3.2.12.1. Plackett-Burman design	45-46
3.2.12.2. Box-Behnken design	46-47
3.2.12.3. Validation of the experimental model	٤٧
3.2.13. Statistatical analysis	٤٧
3.2.14. Purification of L-asparaginase from <i>Kodamaea ohmeri</i>	٤٩
ANOMY	2 1
3.2.14.1. Ammonium sulfate Fractionation\dialysis	٤٩
3.2.14.2. Gel filtration chromatography using Sephadex G-100	٥,
3.2.15. Determination of the molecular weight of the purified L-	
asparaginase by SDS-PAGE (sodium dodecyl sulfatepolyacrylamide	٥,
gel electrophoresis)	
3.2.15.1. Preparations	٥,
3.2.15.2. Procedure	01
3.2.16. Immobilization of the purified L-asparaginase from <i>Kodamaea</i>	
ohmeri ANOMY	٥٢
3.2.16.1. Preparation of the carriers used for immobilization of L-	٥٢
asparaginase	,
3.2.16.1.1. Covalent binding of L-asparaginase onto the activated gel	٥٢
beads	,
3.2.16.1.2. Entrapment immobilization of L-asparaginase into the gel	٥٢
beads	- ,
3.2.16.2. Operational stability of the immobilized L-asparaginase from	٥٣
Kodamaea ohmeri ANOMY	- 1
3.2.16.3. Improvement of gel beads of the optimum carrier	00
3.2.16.3.1. Effect of different gel beads sizes on the activity of the	00
immobilized L-asparaginase	
3.2.16.3.2. Effect of the addition of Mg ²⁺ to the optimum carrier gel	00
beads on the activity of the immobilized L-asparaginase	
3.2.17. Physico-chemical characterization of the purified L-	00
asparaginase from Kodamaea ohmeri ANOMY	
3.2.17.1. Effect of various metal ions on the activity of the purified L-	00
asparaginase	
3.2.17.2. Effect of various inhibitors/activators on the activity of the	00
purified L-asparaginase	
3.2.17.3. Effect of pH on the activity of the purified free and	०٦

immobilized L-asparaginase	
3.2.17.4. Effect of temperature on the activity of the purified free and	
immobilized L-asparaginase	٥٦
3.2.17.5. Determination of the kinetic parameters (K_m and V_{max}) of the	٥٦
purified L-asparaginase	5 (
3.2.18. Assessment of the anti-cancer activity of the purified L-	٥٦
asparaginase from Kodamaea ohmeri ANOMY	• •
3.2.18.1. Cell culture propagation method	٥٧
3.2.18.2. Cell culture preparation for the anticancer assay	٥٧
3.2.18.3. The anticancer assay	٥٧
4. Result	٥٩
4.1. Isolation of yeast from different samples	٥٩
4.2. Determination of the pathogenicity of the yeast isolates	٥٩
4.3. Qualitative assay of L-asparaginase	٦,
4.4. Quantitative assay of L-asparaginase	77
4.5. Identification of the yeast isolates	٦٣
4.5.1. CMA description	٦٣
4.5.2. Molecular identification of the most potent yeast isolate from	7 £
banana peel	(2
4.5.3. Identification of other yeast isolates using Vitek 2 system	٦٧
4.6. Choosing the optimum fermentation medium for the production	79
of L-asparaginase by Kodamaea ohmeri ANOMY	• • •
4.7. Optimization of the L-asparagine Fermentation medium for the	
production of L-asparaginase by Kodamaea ohmeri ANOMY using	٧.
the OFAT method	
4.8. Optimization of the physical factors for the production of L-	77
asparaginase by Kodamaea ohmeri ANOMY	
4. 8.1. Inoculum age	77
4.8.2. Incubation temperature	٧٣
4.8.3. Agitation speed	٧٤
4.9. Statistical optimization of the production of L-asparaginasefrom	٧٦
Kodamaea ohmeri ANOMY	
4.9.1. Plackett-Burman design (PBD)	٧٦
4.9.2. Box-benhken design (BBD)	۸۳
4.9.3. Optimization of the production of L-asparaginase from	91
Kodamaea ohmeri ANOMY using the desirability function	
4.9.4. Validation of the optimized medium components for L-	9 7
asparaginase production	4 ***
4.10. Purification of L-asparaginase from <i>Kodamaea ohmeri</i> ANOMY	9 8
4.10.1. Ammonium sulfate Fractionation	98

CONTENTS

4.10.2. Gel filtration chromatography using a Sephadex G-100 column	98
4.11. Determination of the molecular weight of the purified L-	90
asparaginase	
4.12. Immobilization of the purified L-asparaginase of <i>Kodamaea</i>	97
ohmeri ANOMY	
4.12.1. Operational stability of the immobilized L-asparaginase	97
4.12.2. Improvement of the optimum carrier	٩٨
4.12.2.1. Effect of different gel bead sizes onthe activity of the	9.٨
immobilized L-asparaginase of Kodamaea ohmeri ANOMY	
4.12.2.2. Effect of the addition of Mg ²⁺ to the gel beads of the Alg.	
carrier on theactivity of theimmobilized L-asparaginaseof Kodamaea	١
ohmeri ANOMY	
4.13. Physico-chemical Characterization of the purified L-	1.1
asparaginase of Kodamaea ohmeri ANOMY	
4.13.1. Effect of various metal ions on the activity of the purified L-	1.1
asparaginase	
4.13.2. Effect of different inhibitors and/or activators on the activity of	1.7
the purified L-asparaginase from Kodamaea ohmeri ANOMY	
4.13.3. Effect of pH on the activity of the purified free and	1.0
immobilized L-asparaginase from Kodamaea ohmeri ANOMY	
4.13.4. Effect of temperature on the activity of the purified free and	١٠٨
immobilized L-asparaginase	1 7 7
4.14. Determination of the kinetic parameters (K_m and V_{max}) of the	111
purified L-asparaginase of Kodamaea ohmeri ANOMY	1 1 1
4.15. Assessment of the anti-cancer activity of the purified L-	117
asparaginase of Kodamaea ohmeri ANOMY	
5. Discussion	118_170
Summary	136-15.
References	1 1 1 1 7 7
Appendices	۱٦٨-١٨٤

List of Tables

Table, (1)	Bacterial sources of L-asparaginase
Table, (2)	Fungal sources of L-asparaginase
Table, (3)	Yeast sources of L-asparaginase
Table, (4)	Actinobacterial sources of L-asparaginase
Table, (5)	Plant sources of L-asparaginase.
Table (6)	Production of L-asparaginase from different microbes
Table, (6)	using submerged fermentation
Table (7)	Production of L-asparaginase from different microbes
Table, (7)	using solid-state fermentation
Table (8)	Different techniques applied for the purification of L-
Table, (8)	asparaginase from different microbial sources
Table (0)	Molecular weight of the purified L-asparaginases from
Table, (9)	different microbial sources
Table,	kinetic properties of the purified L-asparaginase from
(10)	different microbial sources
Table,	Temperature and pH optima for the purified L-
(11)	asparaginase from different microbial sources
Table,	Effect of different effector molecules on the purified L-
(12)	asparaginase from different microbial sources
	Factors under investigation and their values for the
Table,	statisticaloptimization of L-asparaginase production by
(13)	Kodamaea ohmeri ANOMY using the Plackett-
	Burman design (PBD)
	Experimental trials designed using the Box-Behnken
Table,	design (BBD) showed the most significant factors
(14)	affecting the production of L-asparaginase and their
	values
Table,	The composition and immobilization method of each
(15)	carrier used for the immobilization of L-asparaginase
Table,	Isolation source and number of yeast isolates obtained
(16)	from each source
Table,	Isolation sources, isolates code, and diameter of pink
(17)	zones of the twenty yeast isolates assayed for the

١

	qualitative production of L-asparaginase
Table, (18)	Final pH, microbial growth, and L-asparaginase
	specific activity of the sixteen yeast isolates after 72 h
	of incubation
	Final pH, microbial growth, and L-asparaginase
Table,	specific activityof Kodamaea ohmeri ANOMY
(19)	inoculated in the ten different fermentation media after
	72 h of incubation
	Final pH, microbial growth, and L-asparaginase
Table,	specific activityof Kodamaea ohmeri ANOMY
(20)	inoculated in the five different fermentation media after
	72 h of incubation
Table,	Effect of the inoculum age on the production of L-
(21)	asparaginase from Kodamaea ohmeri ANOMY
Table,	Effect of the incubation temperature on the production
(22)	of L-asparaginase from Kodamaea ohmeri ANOMY
Table,	Effect of the agitation speed on the production of L-
(23)	asparaginase from Kodamaea ohmeri ANOMY
	The recorded response (L-asparaginase specific
Table,	activity) for the statistical optimization of L-
(24)	asparaginase production by Kodamaea ohmeri
	ANOMY using the Plackett-Burman design (PBD)
Table,	Analysis of Variance (ANOVA) for a linear model to
(25)	detect the effect of the independent variables on L-
(=0)	asparaginase specific activity
Table,	The recorded response (L-asparaginase specific
(26)	activity) for the statistical optimization of L-
(20)	asparaginase production by Kodamaea ohmeri
	ANOMY using the Box-Behnken design (BBD)
Table,	Analysis of Variance values for the quadratic
(27)	regression model obtained from the Box-Behnken
	design (BBD) for L-asparaginase specific activity
Table,	Ammonium sulfate precipitation of L-asparaginase
(28)	from Kodamaea ohmeri ANOMY
Table,	Summary of the purification steps of L-asparaginase of
(29)	Kodamaea ohmeri ANOMY

Table, (30)	L-Asparaginase activity and operational stability of the twenty-eight carriers assayed for the immobilization of L-asparaginase of <i>Kodamaea ohmeri</i> ANOMY
Table, (31)	Effect of different sizes of gel beads onthe activity of the immobilized L-asparaginase of <i>Kodamaea ohmeri</i> ANOMY
Table, (32)	Effect of the addition of Mg ²⁺ to the gel beads of Alg. carrier onthe activity of the immobilized L-asparaginase
Table, (33)	Effect of various metal ions on the activity of the purified L-asparaginase of <i>Kodamaea ohmeri</i> ANOMY
Table, (34)	Effect of the different inhibitors/activators on the activity of the purified L-asparaginase of <i>Kodamaea ohmeri</i> ANOMY
Table, (35)	Effect of pH on the activity of the purified free and immobilized L-asparaginase of <i>Kodamaea ohmeri</i> ANOMY
Table, (36)	Effect of temperature on the activityof the purified free and immobilized L-asparaginase of <i>Kodamaea ohmeri</i> ANOMY
Table, (37)	Anticancer activity of the purified L-asparaginase of <i>Kodamaea ohmeri</i> ANOMY against HepG-2 Cells, MCF-7 Cells, and HCT-116 Cells

List of figures

Fig. (1)	Mechanism of action of L-asparaginase
Fig. (2)	Schematic demonstration for the industrial production of
	the microbial L-asparaginase
Fig. (3)	Different carrier matrics employed for the
	immobilization of L-asparaginase
Fig. (4)	Anti-cancer action of L-asparaginase
	(A) Formation of acrylamide in food product. (B)
Fig. (5)	Prevention of acrylamide formation <i>via</i> L-asparaginase
	which converted L-asparagine to aspartate
	Blood agar assay for the yeast isolates. (A) Control. (B)
Fig. (6)	Yeast isolate viewed with incident light: No obvious
	blood hemolysis
	Qualitative assay of L-asparaginase. (A) Negative
Fig. (7)	control. (B) Positive control. (C) Pink zone surrounding
1 15. (7)	the yeast colonies indicated the production of L-
	asparaginase
	Morphological identification of the yeast isolates. (a)
Fig. (8)	Kodamaea ohmeri (b) Candida krusei (c) Candida
8. (*)	tropicalis (d) Candida famata (e) Cryptococcus laurentii
	(f) Candida guilliermondii
	Phylogenetic tree showing the relationship between the
Fig. (9)	new yeast isolate and its closest relatives based on the
8 ()	analysis of nuclear large subunit (26S) rDNA partial
	sequences
Fig.	Specific activity of L-asparaginase from <i>Kodamaea</i>
(10)	ohmeri ANOMY inoculated in the ten different
	fermentation media after 72 h of incubation
Fig.	Specific activity of L-asparaginase of <i>Kodamaea ohmeri</i>
(11)	ANOMY inoculated in the five different fermentation
	media after 72 h of incubation
Fig.	Effect of the inoculum age on the production of L-
(12)	asparaginase from <i>Kodamaea ohmeri</i> ANOMY
Fig.	Effect of the incubation temperature on the production of