

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Evaluation of the impact of Rutin and Vitamin C combination on Oxidative stress, insulin sensitivity and lipid profile in type 2 diabetic patients

A Thesis

Submitted for Fulfillment of the Requirements for the

Philosophy degree

In Pharmaceutical Sciences

(Clinical Pharmacy)

By

Sara Ramzy Ragheb

Master of Pharmaceutical sciences, 2015

Assistant Lecturer of Clinical Pharmacy
Faculty of Pharmacy
Ain Shams University

Evaluation of the impact of Rutin and Vitamin C combination on Oxidative stress, insulin sensitivity and lipid profile in type 2 diabetic patients

A Thesis

Submitted in Fulfillment of the Requirements for the
Philosophy degree
In Pharmaceutical Sciences
(Clinical Pharmacy)

By Sara Ramzy Ragheb

Assistant Lecturer, Clinical Pharmacy Department Faculty of Pharmacy, Ain Shams University

Under Supervision of **Dr. Nagwa Ali Sabri, PhD**

Professor and Head of Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University

Dr. Lamia Mohamed El- Wakeel, PhD

Professor of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University

Dr. Merhan Samy Nasr, MD

Professor of Internal Medicine Faculty of Medicine , Ain shams University

⊘Acknowledgements **⊗**

Foremost, I am deeply thankful to "GOD" by the grace of whom, this work was possible.

I would like to express my deep gratitude to **Prof. Dr. Nagwa Ali Sabri**, Head and Professor of Clinical Pharmacy Department — Faculty of Pharmacy-Ain Shams University, for her continuous support of my PhD's study and research, sincere help, her patience, motivation and immense knowledge. Iam very grateful to **Prof .Dr. Lamia El-Wakeel**, Professor of Clinical Pharmacy - Faculty of pharmacy - Ain Shams University, for her close supervision, precious efforts and continuous encouragement throughout this work.

I would like to thank **Prof. Dr.Merhan Samy**, Professor of Internal Medicine –Faculty of Medicine - Ain Shams University, for her great assistance, precious efforts and valuable guidance.

I would like to thank all members of the Clinical Pharmacy Department, Faculty of Pharmacy- Ain Shams University, for their support and continuous encouragement.

Last but not the least, I would like to dedicate this work to the soul of my grandmother and my uncle and express my deep appreciation to my parents, my dear sister, my dear husband and my beloved Kids (Mark and Clara), to whom I am greatly indebted for their love and spiritual support throughout my life.

Sara Ramzy Ragheb

List of Contents

Contents	Page
List of Abbreviations	iii
List of Figures	v
List of Tables	vi
Abstract	1
Introduction	2
Review of Literature :	
Type 2 Diabetes Mellitus	4
Oxidative stress and Antioxidants	21
Vitamin C	33
Rutin	37
Role of the clinical pharmacist in the management of diabetes mellitus	41
Aim of the work	47
Patients and Methods	48
Results	62
Discussion	77
Summary and Conclusion	84
References	88
Appendix	96
Arabic Summary	125

List of Abbreviations

2-h PG	2-h Plasma Glucose	
AA	Ascorbic Acid	
ACCP	American College of Clinical Pharmacy	
AD	Alzheimer's disease	
ALT	Alanine Transaminase	
AST	Aspartate Aminotransferase	
BMI	Body Mass Index	
CAT	Catalase	
DPP-4 inhibitors	Dipeptidyl Peptidase-4 inhibitor	
FBG	Fasting Blood Glucose	
FI	Fasting Insulin	
GDM	Gestational Diabetes Mellitus	
GIP	Glucose-dependent Insulinotropic Peptide	
GLP-1	Glucagon Like Peptide 1 Receptor	
GPx	Glutathione Peroxidase	
H ₂ O ₂	Hydrogen Peroxide	
HbA1c	Glycated Hemoglobin	
HDL-C	High-Density Lipoprotein Cholesterol	
HOMA-IR	Homeostasis Model Assessment of Insulin	
HOWA-IK	Resistance	
IDF	International Diabetes Federation	
LDL-c	Low Density Lipoprotien-cholesterol	

LOOH	Lipid hydroperoxide	
MDA	Malondialdehyde	
MENA	Middle East and North Africa	
MODY	Maturity-Onset Diabetes of the Young	
OGTT	Oral Glucose Tolerance Test	
OS	Oxidative Stress	
QOL	Quality Of Life	
RNS	Reactive Nitrogen Species	
RONS	Reactive Oxygen and Nitrogen Species	
ROS	Reactive Oxygen Species	
RS	Reactive Species	
SF-36	Short Form 36 questionnaire	
SGLT2	Sodium-Glucose Transport Protein 2	
SOD	Superoxide Dismutase	
STZ	Streptozotocin	
T2DM	Type 2 Diabetes Mellitus	
TC	Total Cholesterol	
TG	Triglycerides	

List of Figures

Figure	Title	Page
number		number
Figure (1)	The rising prevalence of T2D in Egypt	6
Figure (2)	Pathophysiology of abnormal glucose metabolism in type 2	8
	diabetes mellitus	
Figure (3)	Stepwise management of type 2 DM	20
Figure (4)	Different types of biological antioxidants	21
Figure (5)	Structure of Vitamin C and glucose	33
Figure (6)	Structure of Rutin	38
Figure (7)	Key roles played by clinical pharmacists in diabetic clinics	45
Figure (8)	Model of care for T2DM in primary care.	46
Figure (9)	Standard curve of Super Oxide Dismutase (SOD)	55
Figure (10)	Standard Curve of fasting insulin	59
Figure (11)	HOMA –IR Calculator	60
Figure (12)	Flow chart describing the study according to CONSORT	62
	guideline	
Figure (13)	Fasting Blood Glucose (FBG) levels between three groups	72
Figure (14)	Box plot for percent change of fasting blood glucose (FBG)	72
	levels in the three study groups	
Figure (15)	Change of LDL-c level in the three groups	73
Figure (16)	Change of TC level in the three groups	73

List of Tables

Table Number	Title	Page Number
Table (1)	Criteria for the diagnosis of diabetes.	10
Table (2)	Drugs available for type 2 diabetes mellitus.	18
Table (3)	Classification of Antioxidants	24
Table (4)	Different antioxidants and their effects	25
Table (5)	Baseline patient demographics and clinical characteristics for study groups.	63
Table (6)	The baseline laboratory values of patients in study groups	64
Table (7)	Post-hoc test for Fasting Blood Glucose (FBG) between three groups usingBonferroni pairwise comparison	65
Table (8)	Scores of SF-36 questionnaire domains' in study groups at baseline	66
Table (9)	Post hoc test for general health domain between three groups using Bonferroni pairwise test	67
Table (10)	Comparison between laboratory parameters at baseline and at the end of the study in all groups.	68
Table (11)	Post hoc test for % change of FBG between the three groups using Dunn's Multiple comparison	71
Table (12)	Post-hoc test for Fasting Blood Glucose (FBG) between three groups at the end of the study using Dunn's Multiple comparison.	71
Table (13)	Comparison of Quality of life domains between all groups at the end of the study.	74
Table (14)	Post hoc test for comparing domains of SF-36 questionnaire between all groups at the end of the study	76

Abstract

Abstract

Aim: The objective of this study was to examine the impact of vitamin C on glycemic control, insulin resistance, lipid profile, and oxidative stress markers—alone and in combination with Rutin in patients with type 2 diabetes.

Methods: A prospective, randomized, controlled study carried out on 53 patients with type 2 diabetes randomized into 3 groups ;(group A) 20 patients received rutin and vitamin C, (group B) 20 patients received vitamin C and (group C) 13 patients received antidiabetic medications only. Fasting Blood Glucose (FBG), Glycated Hemoglobin (HbA1c), fasting insulin, Malondialdehyde, Superoxide dismutase, Lipid profile and patients' quality of life (QOL) using SF-36 questionnaire were assessed at baseline and after 8 weeks in all patients.

Results: At baseline, there was no significant difference between 3 groups, only FBG level was lower in group C versus group A and B (p=0.0021). After 2 months, a significant decrease was observed in the % change of FBG in groups A and B versus group C(p=0.0165, 0.0388 respectively). Low Density Lipoprotien-cholesterol (LDL-c) and Total cholesterol (TC) levels improved significantly in group B relative to baseline (p = 0.0239, 0.0166 respectively). In group A versus group C, QOL, physical functioning and power domains improved significantly (p=0.0049, 0.0253 respectively). While Limiting the role of physical and emotional health considerably improved in group B versus group C (p=0.0267,0.0280 respectively).

Conclusion: Vitamin C supplementation alone or with Rutin improved glucose control relative to controls, but did not directly affect HbA1c, TC, HOMA-IR or oxidative stress in T2DM patients.

ntroduction

Introduction

Diabetes mellitus is one of the most common and complex problems of modern societies which has caused many economic and social problems. Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease characterized by insulin resistance and β cell failure leading to elevated blood glucose levels. Chronic elevation of blood glucose is a central factor in the production of reactive species (RS) that, in turn, promote cellular damage and contribute to the development and progression of diabetic complications. In order to encounter the deleterious effects of such species, the body has several endogenous antioxidant systems or can obtain exogenous antioxidants from diet that neutralizes such species and keeps the body homeostasis. An imbalance between the RS generation and the antioxidants leads to the occurrence of a condition known as "oxidative stress" that result in the development or progression of pathological conditions among which one is diabetes.

Rutin is a glycoside that belongs to the flavonoid group, and widely exists in medicinal herbs, vegetables, fruits, beverages, and plant-derived dietary sources. Rutin exhibits multiple pharmacological activities including antidiabetic, antioxidant and anti-inflammatory in different models of rodents. It has been shown that rutin, by its ability to scavenge free radicals and to inhibit lipid peroxidation, prevents streptozotocin (STZ)-induced oxidative damage and protects pancreatic β cells to increase insulin secretion and decrease blood glucose levels. Also, Vitamin C or Ascorbic acid (AA) is a water-soluble antioxidant that scavenges reactive oxygen and nitrogen species (RONS) and reduces oxidative stress in vitro and in vivo .Rutin also seems to stabilize vitamin C. If Rutin is taken together with vitamin C, the activity of ascorbic will be intensified. It helps certain vitamins (e.g. Vitamin C) to perform better.