

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Effect of Use of Laser Acupuncture for Treatment of Drooling and Hypertonia in Children with Cerebral Palsy

AThesis

Submitted for partial fulfillment of Master Degree in Pediatrics

By

Nashwa Khairy Ebada

M.B.B.Ch, 2008 Faculty of Medicine, Cairo University

Under Supervision of

Prof. Dr. Sahar Mohamed Ahmed Hassanein

Professor of Pediatrics

Faculty of Medicine, Ain Shams University

Prof.Dr. Eitedal Mahmoud Daoud

Professor of Pediatrics

National Research Center

Ass.Prof.Dr. Dalia Mohamed Ezz El Din Elmikawy

Assistant Professor of Physical Medicine and Rehabilitation Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost, I feel always indebted to Allah, the **Most Beneficent** and **Merciful**, who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, **Prof. Dr. Sahar Mohamed Ahmed Hassanein**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her valuable guidance and expert supervision, in addition to her great deal of support and encouragement. I really have the honor to complete this work under her supervision.

I would like to express my great and deep appreciation and thanks to **Prof.Dr. Eitedal Mahmoud Daoud,** Professor of Pediatrics, National Research Center, for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Ass.Prof.Dr. Dalia Mohamed Ezz El Din Elmikawy**, Assistant Professor of Physical Medicine and Rehabilitation, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

I would like also to thank **Dr. Ahmed Gamal El-Wehedy**, for his help and cooperation during the whole work.

Special thanks to my **Parents,** my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

🖎 Nashwa Khairy Ebada

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Cerebral Palsy	4
Spasticity	24
Drooling	33
Laser Acupuncture	44
Patients and Methods	55
Results	65
Discussion	91
Summary	103
Conclusions	107
References	109
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ASD : Autism spectrum disorder

BBB : Blood-brain-barrier

BTX-A and B: Botulinum toxin A and B

CP : Cerebral palsy

CT : Computed tomography

DQ : Drooling quotient

DTI : diffusion tensor imaging

GMFCS: Gross Motor Function Classification System

ICF: International Classification of Functioning,

Disability, and Health

ITB : Intrathecal Baclofen

LILT: Low intensity laser therapy

LLLT : low-level laser therapy

MRI : Magnetic resonance imaging

OR : Oral

PBM : Photobiomodulation

PCAs : Personal care assistants

PVL : Periventricular leukomalacia

RF-DRG: Radiofrequency lesion of the dorsal root

ganglion (RF-DRG)

SDR : Selective dorsal rhizotomy

SL : Sublingual

SNAP-25 : Sensitive factor attachment protein-25

TD : Trans-dermal

TENS: Transcutaneous electrical nerve stimulation

UMN : Upper motor neuron

List of Tables

Table No	. Title	Page No.
Table (1):	Laser parameters	62
Table (2):	Modified Ashworth scale	62
Table (3):	Range of motion by joint	63
Table (4):	Medical Research Council grading of power	
Table (5):	Gross Motor Function classification	system 64
Table (6):	Thomas-Stonnel and Greenberg scale	e64
Table (7):	Demographic characteristics of both treatment and control group:	66
Table (8):	Baseline gross motor milestones of b	
Table (9):	Comparison regarding range of motion ankle plantar flexion (degree)	
Table (10):	Comparison regarding range of motion ankle dorsiflexion (degree)	
Table (11):	Comparison regarding range of motion knee flexion (degree)	
Table (12):	Comparison regarding range of motion hip abduction (degree)	
Table (13):	Comparison regarding range of motion hip flexion (degree)	
Table (14):	Comparison regarding tone of ankle pl flexors.	
Table (15):	Comparison regarding tone of knee f	lexors 79

Table (16):	Comparison regarding tone of hip adductors	81
Table (17):	Comparison regarding tone of hip flexors	83
Table (18):	Comparison regarding power of hip flexors	85
Table (19):	Comparison regarding power of knee extensors	87
Table (20):	Comparison regarding gross motor function (degree)	89
Table (21):	Comparison regarding drooling (degree)	90

List of Figures

Figure No	e. Title	Page No.
Figure (1):	Gross motor function classifi	
Figure (2):	Diode laser device	60
Figure (3):	Comparison regarding range of r of right ankle plantar flexion	
Figure (4):	Comparison regarding range of r of left ankle plantar flexion	
Figure (5):	Comparison regarding range of r of right ankle dorsiflexion	
Figure (6):	Comparison regarding range of r of left ankle dorsiflexion	
Figure (7):	Comparison regarding range of r of right knee flexion	
Figure (8):	Comparison regarding range of r of left knee flexion	
Figure (9):	Comparison regarding range of r of right hip abduction	
Figure (10):	Comparison regarding range of r of left hip abduction	
Figure (11):	Comparison regarding range of r of right hip flexion	
Figure (12):	Comparison regarding range of r of left hip flexion	
Figure (13):	Comparison regarding tone of right planterflexors	

Figure (14):	Comparison regarding tone of left ankle planterflexors	78
Figure (15):	Comparison regarding tone of right knee flexors	80
Figure (16):	Comparison regarding tone of left knee flexors	80
Figure (17):	Comparison regarding tone of right hip adductors	82
Figure (18):	Comparison regarding tone of left hip adductors	82
Figure (19):	Comparison regarding tone of right hip flexors	84
Figure (20):	Comparison regarding tone of left hip flexors	84
Figure (21):	Comparison regarding power of right hip flexors	86
Figure (22):	Comparison regarding power of left hip flexors	86
Figure (23):	Comparison regarding power of right knee extensors	88
Figure (24):	Comparison regarding power of left knee extensors	88
Figure (25):	Comparison regarding gross motor function	
Figure (26):	Comparison regarding drooling	90

Introduction

Cerebral palsy (CP) clinically defined as neurodevelopmental disorder that results from a disruption in the development in the infantile or fetal brain. Cerebral palsy is usually associated by sensation, cognition, communication, perception, and/or behavioral disorders, and/or by a seizure disorder". It affects over 17 million people worldwide and is the most common physical disability in childhood (Cerebral Palsy Alliance Research Foundation, 2018).

In Egypt it has an estimated prevalence of 2.04 per 1000 live births. Prognosis of cerebral palsy patients usually relies on the type and severity of the pathological neurological insult and if there are associated medical comorbidities (*Mathewson and Lieber*, 2015).

Spastic cerebral palsy is by far the most common type of overall cerebral palsy, occurring in about 70% of all cases. Spasticity is the result of upper motor neuron lesion in the brain as well as the corticospinal tract or the motor cortex. It is also considered to be a critical factor preventing movements in these patients. In addition to motor impairment, children with cerebral palsy may also experience learning difficulties, have difficulty feeding and have seizure conditions. Moreover, many children may experience sensory impairments and have difficulties communicating (*Mathewson and Lieber*, 2015).

Drooling, or sialorrhoea, is a common difficulty faced by children with neurological impairment including cerebral palsy. It may lead to a reduction in their quality of life, causing skin irritation, dehydration and high levels of embarrassment and social isolation for both the patient and family (*Collins et al.*, 2020).

Conventional therapy for cerebral palsy has been concentrated to increase the function and minimize complications. Acupuncture is a medical procedure, an effective nonpharmacological therapy and provides promising results for some pediatric problems (*Smith and Kurian*, 2016).

Laser acupuncture is one of the acupuncture techniques with minimal side effects and safe for children. Stimulation of acupuncture points using low intensity laser light can induce photobiostimulation reaction on cells and tissues. Laser acupuncture does not cause mechanical effect resembling the manual acupuncture; however, it has similar mechanism in stimulating the signal transduction pathway (*Putri et al.*, 2020).