

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University

Faculty of Engineering

A Research Study on the Design Parameters of Dual Rotor Wind Turbine

Thesis Submitted to the Faculty of Engineering Ain Shams University

For Partial Fulfillment of the Degree of Master of Science in Mechanical Power Engineering

By:

Hazem Ali Mohamed Ali Abdelkarim

Bachelor of Science in Mechanical Engineering The British University in Egypt – 2014

Supervised By:

Prof. Dr. Nabil Abdel-Aziz Mahmoud

Professor of Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University.

Prof. Dr. Ahmed Mohamed Reda El-Baz

Professor of Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University.

Dr. Ashraf Mostafa Hamed

Doctor of Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University.

A Research Study on the Design Parameters of Dual

Rotor Wind Turbine

By Hazem Ali Mohamed Ali Abdelkarim

B.Sc. Mechanical Engineering The British University in Egypt

EXAMINERS COMMITTEE

Name	signature
Prof. Ahmed Farouk Abdel Gawad	
Mechanical Power Engineering Department	•••••
Faculty of Engineering – zagazig University	
Prof. Ashraf A. E. Ghorab	
Mechanical Power Engineering Department	
Faculty of Engineering – Ain Shams University	
Prof. Nabil Abdel Aziz Mahmoud	
Mechanical Power Engineering Department	
Faculty of Engineering – Ain Shams University	
Prof. Ahmed Mohamed Reda El Baz	
Mechanical Power Engineering Department	
Faculty of Engineering – Ain Shams University	

Date : .../.../....

List of Publications

1- H. A. Abdelkarim, N. A. A. Mahmoud, A. R. El-Baz and A. M. Hamed, "Numerical Analysis on the Performance of Dual Rotor Wind Turbine," International Journal of Scientific Research and Management (IJSRM), vol. 08, no. 03, pp. 352-368, 2020.

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirement

for the M.Sc. Degree in Mechanical Power Engineering, Ain Shams University.

The work included in this thesis has been carried out by the author in Mechanical Power

Engineering Department, Ain Shams University.

No part of the thesis has been submitted for a degree or a qualification at other university

or institute.

Signature:

Name: Hazem Ali Mohamed Ali Abdelkarim

Date:

Researcher Details

Name of Researcher Hazem Ali Mohamed Ali Abdelkarim

Date of Birth Jan, 10th 1993

Place of Birth Cairo - Egypt

Nationality Egyptian

University degree B.Sc. Mechanical Engineering

Department Mechanical Department

University The British University in Egypt

Date of Degree July 2014

Current Job Equipment Engineer at TRANE Co.

ACKNOWLEDGMENT

I would like to express my gratitude and deep appreciation to my supervisors Prof. Ahmed

El Baz, Prof. Nabil Abdelaziz and Dr. Ashraf Hamed for their support, effort, valuable

guidance that strengthened me to overcome the challenges I faced during my work. I am

also thankful for Mechanical Engineering Department stuff at the British University in

Egypt as they shared their experience and knowledge with me when requested.

Furthermore, I am grateful to Prof. Ahmed El Baz for helping me throughout the research

with permitting the full access to his personal computer to perform the numerical runs when

needed.

Also I am grateful for all the researchers that have published their work for online access.

This was a source of knowledge and a starting point to my research.

Last but never, I will always be grateful to my family for their endless support and

motivation that led to the completion of the dissertation successfully.

Hazem Abdel-Karim, 2020

vi

ABSTRACT

This study investigates the aerodynamic performance of a special modification on the horizontal axis wind turbines aiming to maximize the power extracted from the wind. The study focuses on the effect of introducing a second rotor to the main rotor of the wind turbine in what is called a dual-rotor wind-turbine (DRWT). The numerical study was investigated on the performance of small-scale model of a wind turbine of 0.9 m diameter using S826 airfoil.

Both the Co-rotating and Counter-rotating configurations were investigated at different tip speed-ratios (TSR) and compared with the performance of the single rotor wind turbine (SRWT). Many parameters were studied in the dual-rotor turbines. These include the spacing between the two rotors, the pitch angle of the rear rotor, changing the rotation speed ratio between the rear and front rotor and the effect of the diameter ratio (D_{ratio}) between the front and rear rotor. Three-dimensional simulations were performed using Multi-Reference Frame (MRF) technique.

The Co-Rotating Wind Turbine (CWT) and Counter-Rotating Wind Turbine (CRWT) were found to have better performance compared to that of the SRWT with an increase of 12 to 14% in peak power coefficients. Moreover, the effect of changing the pitch angle of the rear rotor on the overall performance was found to be of a negligible effect between angles 0° and 2° tilting toward the front rotor. On the other hand, the ratio of rotational speed of the rear rotor to the front rotor was found to cause a further increase to the peak performance of the CWT and CRWT of about 3 to 5%. The study ends up with investigating the effect of changing the diameter ratio between the two rotors, separating distance, and the rotation speed ratio as well as study the effect on the overall performance compared to the SRWT.

KEY WORDS:

Dual-rotor wind-turbines, Counter-rotating wind turbines, Co-rotating wind turbines, Computational fluid dynamics, Power coefficient.

NOMENCLATURE

Roman Symbols

A	Wind Turbine Rotor Swept Area	$[m^2]$
C_{d}	Drag Coefficient	[-]
C _L	Lift Coefficient	[-]
Ср	Power Coefficient	Ср
C_{T}	Moment Coefficient	[-]
D	Single Rotor wind turbine Diameter	[m]
D_F	Front Rotor Diameter	[m]
D _r	Rear Rotor Diameter	[m]
D_{ratio}	Diameter Ratio between rear and front rotor	[-]
F_x	Axial Force	[N]
K	Turbulent Kinetic Energy	[J]
N	Rotational Speed for Single rotor wind turbine	[rpm]
$N_{ m f}$	Front Rotor Rotational Speed	[rpm]
$N_{\rm r}$	Rear Rotor Rotational Speed	[rpm]
N _{ratio}	Rotational Speed Ratio rear to front rotor	[-]
P	Power extracted from wind stream	[Watt]
R	Wind Turbine Rotor Radius	[m]
R_f	Front Rotor Radius	[m]
R_r	Rear Rotor Radius	[m]

Т	Torque	[N.m]
u	Velocity in X-direction	[m/s]
\bar{u}	Mean velocity in X-direction	[m/s]
u'	Fluctuating velocity in X-direction	[m/s]
V_e	Velocity at exit of wind turbine	[m/s]
V_i	Velocity at inlet of wind turbine	[m/s]
V_r	Wind velocity at reference height	[m/s]
V_{wind}	Velocity of the Upcoming wind stream	[m/s]

Greek Symbols

$ ho_{air}$	Air density	[kg/m ³]
μ	Dynamic viscosity	[Pa.s]
<i>U</i> *	Friction Velocity	[m/s]
α	Hellmann exponent	[-]
ν	Kinematic viscosity	$[m^2/s]$
Θ	Pitch angle rear to front rotor	[Degree]
λ	Tip speed ratio	[-]
ω	Turbine angular speed	[rad/s]
Y ⁺	Y Plus	[-]

Abbreviations

BEM	Blade Element Momentum Theory
CFD	Computational Fluid Dynamics
CRWT	Counter-Rotating Wind Turbine
CWT	Co-Rotating Wind Turbine
DRWT	Dual-Rotor Wind Turbine
HAWT	Horizontal-Axis Wind Turbine
MRF	Multi-Reference Frame
OPT	Optimal Twist and Tapered
SRWT	Single-Rotor Wind Turbine
SST	Shear Stress Transport Turbulence Theory
TSR	Tip Speed-Ratio
TUT	Tapered and Un-Twisted
UOT	Untapered and Optimum Twist
UUT	Untapered and Untwisted
VAWT	Vertical-Axis Wind Turbine

Contents

1	Cha	Chapter (1) Introduction and Background				
	1.1	Introduction				
	1.2	Background	4			
	1.2.	1 History of Wind Power	4			
	1.2.	Principals of Wind Power	4			
	1.3	Thesis Structure	7			
2	Cha	pter (2) Literature Review	9			
	2.1	rief overview of previous work				
	2.2	Objective of the present study	26			
3 Chapter (3) Computational Me		pter (3) Computational Methods	28			
	3.1	Introduction	28			
	3.2	Governing equations	28			
	3.2.	1 Continuity and Momentum equations	29			
	3.2.	2 Standard $k-arepsilon$ Model	31			
	3.2.	3 $\pmb{K} - \pmb{\omega} SST Model$	32			
	3.2.	Comparison between $standard\ k - arepsilon\ $ model and $k - \omega$ SST model	32			
4	Cha	pter (4) Model Validation	34			
	4.1	Solution Specification	34			
	4.2	Building the Model	35			
4.3 Dor 4.3.1 4.3.2		Domain-Independent Test	39			
		1 Main Domain-independent test	40			
		2 Rotating domain-independent test	41			
	4.4	Mesh-Independent Test	43			
	4.5	Turbulence Model-Performance Test	45			
	4.6	Summary of the Model Validation	47			
5	Cha	pter (5) Results and Discussion	54			
5.1 Introduction		Introduction	54			
	5.2	DRWT at Diameter Ratio equals one	56			
	5 2	1 Domain-indecency test	56			

	5.2.2	2	Mesh-independency test57	
	5.2.3	3	Summary of the DRWT model	
5	.3	Spa	cing between the Rotors	
5	.4	Pitc	h Angle of the Rear Rotor	
5	.5	Rota	ational Speed Ratio between the Front and Rear Rotor	
5	.6	Diar	meter Ratio between the Front and Rear Rotors	
	5.6.1	L	Model Validation 84	
	5.6.2	2	Co-rotating wind turbine with different diameter ratios	
	5.6.3	3	Counter-rotating wind turbine with different diameter ratios	
	5.6.4	1	Summary for DRWT performance at different diameter ratios	
6	Chap	oter	(6) Conclusion and recommendations for future work	
6	.1	Intr	oduction	
6	.2	Con	clusions	
6	.3	Rec	ommendation for Future Work102	
7	Bibli	ogra	phy103	