

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Evaluation of miRNA-106a and ADARB1 in Autistic Children

Thesis

Submitted for Partial Fulfillment of Master Degree in Medical Biochemistery & Molecular Biology

By

Brihan Magdy Abdu-Allah Zamil

Demonstrator of Medical Biochemistry and Molecular Biology M.B.B.Ch., Faculty of Medicine - Ain Shams University

Under supervision of

Prof. Dr. Randa Ali-Labib

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine, Ain Shams University

Dr. Eman Khairy Farahat

Assistant Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine, Ain Shams University

Dr. Walaa Youssef Youssef

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Randa Ali-Labib**, Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Eman Khairy Farahat**, Assistant Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Walaa Youssef Youssef**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Finally, all my sincerest thanks to my husband, my beautiful daughter and my family for their care, support and encouragement, and my friends and colleagues for their valuable help and advice.

Brihan Magdy

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	4
Review of Literature	
Autism Spectrum Disorder	5
MicroRNA	17
ADARB1	28
Subjects and Methods	35
Results	
Discussion	
Summary, Conclusion and Recommendations	
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	The association of the characteristics in the different stud	•
Table (2):	Percentage of risk factors in diff groups	-
Table (3):	Relative Expression of miR-106a as in autistic children and control grow	
Table (4):	The relation between CARS score biomarkers in autistic cases	
Table (5):	miR-106a serum expression level in different variables among chil Autism.	ldren with
Table (6):	miR-106a serum expression level in specific clinical characteristics amount with Autism.	n relation to ong children
Table (7):	ADARB1 mRNA serum level in different studied variables amore with Autism.	relation to ng children
Table (8):	ADARB1 serum expression level in specific clinical characteristics amount with Autism.	n relation to ong children
Table (9):	Correlation between serum miR with different variables in studied a	-106a level
Table (10):	Correlation between serum ADA with different variables in studied a	ARB1 level
Table (11):	Correlation between assessed bion variable scores in autistic cases	
Table (12):	Correlation between serum level of and ADARB1 mRNA in the studied	

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Vineland Adaptive Behavior Scales domains and subdomains	10
Figure (2):	Canonical and mirtron noncanonical pathway biogenesis of miRNA	21
Figure (3):	ADARs catalyse hydrolytic deamination of adenosines to inosines which are similar to guanosines	29
Figure (4):	Editing sites in the glutamate receptors pre mRNA	
Figure (5):	Editing sites in serotonin receptor pre mRNA	32
Figure (6):	Snapshot shows the involvement of miR- 106a in Autism spectrum disorder	37
Figure (7):	Snapshot shows ADARB1 gene is one of the predicting targets to miR-106a	38
Figure (8):	Snapshot shows miR-106a/ADARB1 alignment	39
Figure (9):	Box plot showing the median value and range of the serum miR-106a level in both groups.	61
Figure (10):	Box plot showing the median value and range of the serum ADARB1 mRNA level in both groups	
Figure (11):	(ROC) Curve analysis and cutoff value for	63
Figure (12):	(ROC) Curve analysis and cutoff value for serum ADARB1 mRNA level	64

List of Abbreviations

Abb.	Full term
A	Adenosine
	. Adaptive Behavior Composite score
	. Adenosine Deaminase Acting on RNA B1
	. Attention deficit/hyperactivity disorder
	. Autoimmune diseases
	. Argonaute family proteins
	. Amyloid precursor protein
	. Autism spectrum disorder
	. Area under the curve
	. Blood - brain barrier
Ca	. Calcium
CARS	. Childhood Autism Rating Scale
	. Complementary DNA
	. CUG-BP, Elav-like family
	. Chromatin modifiers proteins
CNS	. Central nervous system
CRH	. Corticotropin-releasing hormone
CSF	. Cerebrospinal fluid
Ct	. Threshold Cycle
DGCR8	. DiGeorge syndrome critical region gene 8
DM	. Deaminase domain
dsRBDs	. Double stranded RNA binding domains
	. Double stranded RNA-binding proteins
DUI	. daytime urinary incontinence
FN	. False negatives
FP	. False positives
FR	. Folate receptor
G	. Guanosine
GIT	. Gastrointestinal tract

List of Abbreviations Cont...

Abb.	Full term
GluRs	Glutamate receptors
GSH	
	Glutathione peroxidase
	Glycine-tryptophan protein of 182 kDa
	High density lipoprotein
	Human microRNA Disease Database, version 2
HT2C	
I	Inosine
I/V	Isoleucine to valine
ICU	Intensive care unit
ID	Intellectual disability
IL	Interleukin
Imp8	Importin 8
IP6	Inositol hexakisphosphate
IQ	Intelligent quotient assessment
LBW	Low birth weight
lincRNAs	Large intergenic non-coding RNAs
lncRNAs	Long non-coding RNAs
MDD	Major depressive disorder
MECP2	Methyl CpG binding protein 2
MHC	Major histocompatibility complex
miRNAs	Micro RNAs
MREs	miRNA response elements
mRNA	Messenger RNA
MTHF	5-methylene tetra hydrofolate
MTHFR	Methylene tetra hydrofolate reductase
n	Number
	nocturnal enuresis
NICU	Neonatal intensive care unit

List of Abbreviations Cont...

Abb.	Full term
NLGN	Neuroligins
	N-methyl-D-aspartate receptor
	Negative predictive value
NRXN	9 1
nt	
	Olfactory mucosal stem cells
	Protein activator of the interferon-induced
	protein kinase
PAHs	Polycyclic aromatic hydrocarbons
	Polymerase chain reaction`
piRNAs	PIWI-interacting RNAs
Pol II	Polymerase II
PPV	Positive predictive value
pre-miRNA	Precursor miRNA
pri-miRNA	Primary transcript
PTBP1/2	polypyrimidine tract binding protein 1 and 2
Q/R	Glutamine to arginine
qRT-PCR	Quantitative reverse transcription polymerase
	chain reaction
	Correlation coefficient
	Arginine to glycine
	Rheumatoid arthritis
	RNA-induced silencing complex
	Receiver operating characteristic
•	Relative quantity
	Ribosomal RNAs
	Standard deviation
	SH3 and multiple ankyrin repeat domains
shRNAs	Short hairpin RNAs

List of Abbreviations Cont...

Abb.	Full term
ciRNAc	. Small interfering RNAs
	. Systemic lupus erythematosus
	. Nucleolar RNAs
	Single nucleotide polymorphisms
	. Small nuclear RNAs
	Super oxide dismutase
	. Statistical Package for Social Sciences
	. Small temporal RNAs
TAR	. Transactivation-responsive
TE	. Tris-EDTA
TGA	. Transcriptional gene activation
TGS	. Transcriptional gene silencing
TN	. True negatives
TNF	. Tumor necrosis factor
TP	. True positives
TRBP	. Transactivation-responsive RNA-binding proteins
tRNAs	. Transfer RNAs
T-UCRs	. Transcribed ultra-conserved regions
UTR	. Untranslated region
VABS	. Vineland Adaptive Behavior Scales
X	. Mean
Y/C	. Tyrosine to cysteine
ΔCt	. Delta Threshold Cycle
°C	. Centigrade

Introduction

utism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by disturbances in social interactions, language, and communication, as well as by the presence of stereotyped behaviors and restricted interests (Salem et al., 2013).

In most cases, ASD symptoms are first recognized in early childhood. The average age of ASD diagnosis is 4 years. The world Health Organization estimated the prevalence of ASD in children to be 1 in 160 worldwide (World Health Organization, 2018). This increased prevalence will have enormous future public health implications, and has necessitated the need to discover predictive noninvasive biomarkers that could be index for autism before the onset of symptoms (Anitha and Thanseem, 2015).

In recent years, epigenetic mechanisms, which act at the interface of genes and the environment, have been identified as a potential contributor to the pathogenesis of several neurodevelopmental abnormalities such as ASD. Epigenetic factors control heritable changes in gene expression without changing the DNA sequence. MicroRNAs (miRNAs) have recently emerged as prominent epigenetic regulators of a variety of cellular processes, including differentiation, apoptosis and metabolism (*Vasu et al.*, *2014*).

MicroRNAs (miRNAs) are small RNA molecules of approximately 22 nucleotides that regulate the expression of genes by binding to the 3'untranslated regions (3'UTR) of specific mRNAs directing translational repression or transcript degradation (Talebizadeh et al., 2008). MiRNAs are abundantly present in brain (Vasu et al., 2014), and have been found to play important roles in neurogenesis, synaptogenesis, and neuronal migration (Hicks et al., 2016).

Abnormal expression of circulating miRNAs have been reported in several neurological and neurodevelopmental disorders. Thus, miRNAs within the central nervous system (CNS) may be exported across the blood-brain barrier (BBB) by the microvesicles (exosomes) released by neurons and glial cells (Anitha and Thanseem, 2015). Serum miRNAs, which may be derived from circulating blood cells, are known to be stable and resistant to the action of RNase, suggesting the potential efficacy of serum miRNAs as noninvasive biomarkers for ASD (Vasu et al., 2014).

Based on using HMDD V2 (the Human microRNA Disease Database, version 2) and PhenomiR database, and according to Abu-Elneel et al. (2008), miRNA-106a has been reported to be differentially expressed in postmortem cerebellar cortex tissue of individuals with ASD compared to non ASD individuals. This miRNA was also deregulated in serum of astrocytoma patients, a primary brain tumor, and in whole blood samples of Alzheimer's disease as reported by Zhi et al,