

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Biochemistry and Nutrition Department Faculty of Women for Art, Science and Education Ain Shams University

A study on olive seeds powder and its nano- particles on arterial endothelial dysfunction in rats fed on high fat high fructose diet.

Thesis

Submitted to Faculty of Women, Ain Shams University In Partial Fulfillment for the Master of Science Degree (MSc) in Biochemistry and Nutrition

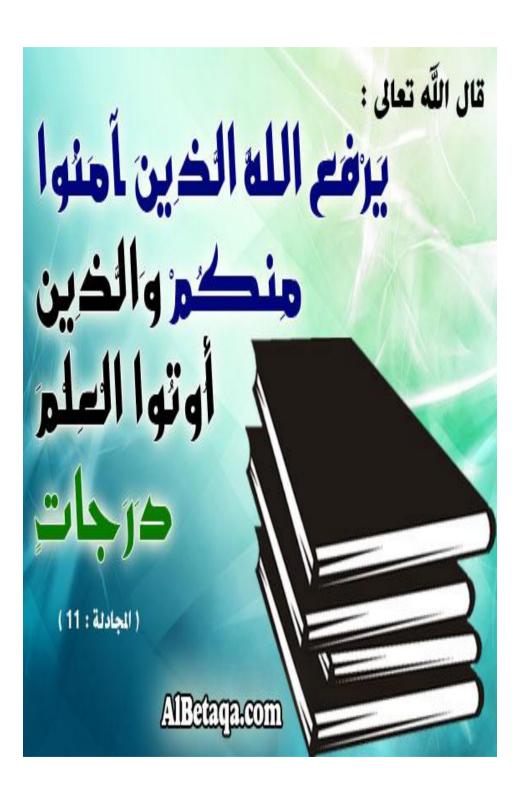
By

Eman Hosny Fahmy Genedy

B.Sc., Biochemistry and Nutrition (2013), Demonstrator in Biochemistry and Nutrition's Department Faculty of Women for Arts, Science and Education, Ain Shams University

Under Supervision of

Dr. Enas Ali Kamel Mohamed


Assistant Professor of Nutrition, Department of Biochemistry and Nutrition, Faculty of Women, Ain Shams University

Dr. Eman Hassan Abdel Aziz

Lecturer of Biochemistry and Nutrition, Department of Biochemistry and Nutrition, Faculty of Women, Ain Shams University

Dr. Nehad Naem Hamed Shosha

Lecturer of Biochemistry and Nutrition, Department of Biochemistry and Nutrition, Faculty of Women, Ain Shams University

Acknowledgment

First of all and foremost, thanks to **Allah** almighty for giving me the strength to continue this work until has reached its end.

I would like to thank my supervisor with deepest gratitude and sincere appreciation to **Dr. Enas Ali Kamel mohamed** Assistant Professor of Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Art, Science and Education, Ain Shams University for her valuable supervision, great help, and guidance and sincer advice during all steps of this work. I have learned many things since I became Dr. Enas's student. She consistently allowed this thesis to be my own work, but steered me in the right direction whenever she thought I needed it. I could not have imagined having a better advisor and mentor for my master study.

Let me express my appreciation to **Dr. Eman Hassan Abdel Aziz** Lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Art, Science and Education, Ain Shams University, for her valuable instruction.

My deepest gratitude and sincere appreciation goes to **Dr. Nehad Naem Hamed Shosha** Lecture of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Art, Science and Education, Ain Shams University for her valuable supervision, great help, and guidance and sincer advice during all steps of this work.

I am thankful to **Prof. Dr. Adel Baker**, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University for the help that he offered in the histopathological examination carried out in this study.

I am thankful for **Prof.Dr. Laila Rashed**, Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University for performing ELIZA analyses in Biochemistry and Molecular biology Unit.

With a great pleasure, I would like to express my sincere gratitude to staff members of Biochemistry and Nutrition Department, Faculty of Women for Art, Science and Education, Ain Shams University for their encouragement to carry out this work.

Eman Hosny Fahmy

Dedication

I feel deeply grateful to my family for their continuous love, help, advice and support.

I dedicate this work to

My great mother, my love son (Hazem), my love husband (Ahmed), my brothers and my sisters

and especially dedicated for The soul of my father.

Also, I dedicate this work to

My father in law and my mother in law

List of Abbreviations

Abbreviations	Full term / words
ADMA	Asymmatric dimethylarginine
AGEs	Advanced glycation end products
AGU	Anhydroglucose unit
Ang II	Angiotensin II
BBB	Blood-Brain Barrier
BET	Brunauer, Emmett and Teller
BMI	Body mass index
BW	Body weight
CAD	Coronary artery disease
Caf	Cafeteria diet
CAT	Catalase
Cav-1	Caveolin -1
CE	Cholesterol esterase
cGMP	Cyclic guanosine monophosphate
CRP	C-reactive protein
COX	Cholesterol oxidase
CVD	Cardiovascular disease
DA	Dubinin-Astakhov
EC	Endothelial Cell
ECE	Endothelin converting enzyme
ED	Endothelial dysfunction
ELISA	Enzyme linked Immune Sorbent Assy
eNOS	Endothelial Nitric Oxide Synthase
EPC	Endothelial progenitor cell
ER	Endoplasmic reticulum
ET-1	Endothelin-1
ETs	Endothelins
FER	feed efficiency ratio
FFA	Free fatty acid
GIP	Gastric inhibitory polypeptide

GO	glucose oxidase
H &E	hematoxylin and eosin
HDL-C	High-density lipoprotein cholesterol
HF	Heart failure
HFHF	High Fructose –High Fat diet
HOMA-IR	Homeostatic Model Assessment of Insulin
	Resistance
HRP	Horse radish peroxidase
HT	Hydroxytyrosol
HPMC	Hydroxypropylmethylcellulose
ICAM	Intercellular adhesion molecules
IL-6	Interlukin-6
LDL-C	Low density lipoprotein - cholesterol
LOX-1	Lectin-like oxidized low density lipoprotein
	receptor-1
MAP	Mean arterial pressure
MAPK	Mito-gen Activated Protein Kinase
MDA	Malondialdehyde
MUFA	Monounsaturated fatty acid
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
	Oxidase
NCC	Nanocrystalline cellulose
NIDDM	Non-insulin-Dependent Diabetes Mellitus
NO	Nitric oxide
NPs	Nanoparticles
O.D	Optical density
ox-LDL	Oxidized low density lipoprotein
PBS	Phosphate buffer saline
PI3K	Phosphatidylinositol 3- kinase
PKC	Protein Kinase C
PL	Parameter logistic
PMNs	Polymorphonuclear neutrophils
PO	peroxidase
PUFA	Polyunsaturated fatty acids
PVAT	Perivascular adipose tissue

QE	Quercetin equivalent
RD	Regular diet
ROS	Reactive Oxygen Species
SOD	Superoxide dismutase
TAGs	Triacylglycerols
TBA	Thiobarbituric acid
TC	Total cholesterol
TEM	Transmission Electron Microscopy
TMB	Tetra methyl benzidine
TNFα	Tumor necrosis factor alpha
TXA2	Thromboxane A2
VCAM-1	Vascular Cellular Adhesion Molecule-1
VDR	Vitamin D receptor
VLDL-C	Very low density lipo-protein-cholesterol
VSMC	vascular smooth muscle cell
XO	Xanthine Oxidase
XRD	X-ray Diffraction

<u>list of contents</u>

Subject	Page
	NO.
Introduction	1
Aim of the work	3
Review of literature	4
Endothelial cell	4
Endothelial Function and Dysfunction	5
Risk factors promoting endothelial dysfunction	7
Infection	7
Smoking	7
Aging	9
Poor eating habits	10
Hypertension	14
Hyperglycemia	14
Insulin resistance (Hyperinsulinemia)	15
Dyslipidemia	19
Possible mechanisms underlying dyslipidemia-	21
induced ED include	2.1
Obesity	21
Chronic inflammation	23
Oxidative stress	24
Impaired regulation of vascular tone	26
Endothelial dysfunction: The first step in coronary	27
arterosclerosis	
Maintenance and recovery of endothelial functions	28
Physical Activity	28
Smoking cessation	30
Body weight control	30
Healthy diets	30
Olive fruits as an attractive source for polyphenols	34

Olive fruits (Olea europaea L.)	
Olive seeds	
Nutritional profile of olive seeds	37
Phenolic compounds in olive seeds	38
Nanoparticals	39
Useful nanomatrials in foods	41
Nanotechnology and increasing the bioavailability	41
Protective effect of fiber in olive seeds on endothelial	42
dysfunction	
Nanocellulose	44
Factors affecting nanocellulose properties	44
Nanocellulose and drug delivery	45
Materials and methods	47
1-Materials	47
1.1. Plant materials	47
1.2. Chemicals	
1.3. Animals	
1.4. Diet	47
2- Method	50
2.1. Preparation of olive seeds powder	
2.2. Evaluation of the chemical composition of olive	
seeds powder	
2.2.1. Determination of moisture content	51
2.2.2. Determination of Protein (g/100g dried weight)	51
2.2.3. Determination of lipid content (g/100g dried	53
weight)	
2.2.4. Determination of ash	54
2.2.5. Determination of crud fiber	
2.2.6. Determination of total Carbohydrates (g/100gdried weight)	56

2.2.7. Determination of Total flavonoids (g/100g)	56
2.2.8. Determination of Total phenols (g/100g)	57
2.3. Preparation of olive seeds nanoparticles	57
2.4. characterization of olive seeds in native and nano	59
form	
3-Experimental design	60
4- Biological evaluation	61
5- Blood sample collection	62
6- Biochemical analyses	63
6.1. Determination of glucose hemostasis	63
6.1.1. Determination of Serum glucose level	63
6.1.2. Determination of serum insulin level	65
6.1.3. Calculation of Serum Homeostatic Model	67
Assessment of Insulin Resistance (HOMA-IR)	
6.2. Determination of lipid profile	67
6.2.1. Determination of total cholesterol	67
concentration (TC)	
6.2.2. Determination of serum triacylglycerols (TAGs)	69
6.2.3. Determination of serum high density	71
lipoprotein cholesterol (HDL-C)	
concentration	
6.2.4. Calculation of serum very low density	73
lipoprotein cholesterol (VLDL-C) concentration	13
6.2.5- Calculation of serum density	73
lipoprotein cholesterol (LDL-C)	7.5
concentration low	
6.3. Determination of lipase enzyme activity.	73
6.4 Determination of proinflammatory markers and	75
lipid peroxides	
6.4.1. Determination of Serum C-Reactive protein	75
(CRP)	
6.4.2. Determination of serum interleukin -6 (IL-6)	78

6.4.3. Determination of lipid peroxides as malondialdehyde (MDA) in serum.	80
6.5. Determination of Vasodilators and vasoconstrictor factors in serum	82
6.5.1. Determination of serum prostacyclin	82
6.5.2. Determination of serum nitric oxide (NO)	85
6.5.3. Determination of endothelial nitric oxide Synthase (eNOS) in serum	86
6.5.4. Determination of serum endothelin-1(ET-1).	88
6.6. Determination of adhestion molecules	91
6.6.1. Determination of vascular cellular adhesion molecule(VCAM -1)	91
6.6.2. Determination of E- selectin in serum	94
7-Microscopic examination of aorta samples	97
8-Statistical analysis	97
Result and Discussion	98
Evaluation of nutritive value of olive seeds powder	98
Synthesis and characterization of native and nano olive seeds powder	101
Effect of native or nano olive seeds on biological	110
evaluation and relative weight of organs in all experimental groups	
Effect of native or nano olive seeds on serum glucose and serum insulin levels and calculated HOMA-IR in all experimental groups	121
Effect of native or nano olive seeds on Lipid profile (TC, TAGs, HDL-C, LDL-C and VLDL) and lipase enzyme activity in all experimental groups	136
Effect of native or nano olive seeds on serum	1

stress marker (MDA)in all experimental groups	
Effect of native or nano olive seeds on vasodilator	158
factors (prostacyclin, NO and eNOS) and	
vasoconstrictor factor (ET-1) in all experimental groups	
Effect of native or nano olive seeds on vascular cellular	169
adhesion molecules (VCAM-1 and E- selectin) in all	
experimental rat groups	
The effect of native or nano olive seeds on microscopic	175
examination of aorta tissues in all experimental rat	
groups	
English summary	185
Conclusion	192
Recommendation	193
References	194
Arabic summary	