

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

MANAGEMENT OF FERTIGATON UNDER ARID CONDITION

 $\mathbf{B}\mathbf{y}$

SHERIN AHMED MAHMOUD BAKR

B.Sc. (Agric. Eng.), Fac. Agric., Cairo University, (1999) M.Sc. (Agric. Sci.), Environmental Science, Ain Shams University, (2010)

A Thesis Submitted in a Partial Fulfillment
Of
the Requirements for Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Bio Engineering Systems in Arid Area)

Department of Arid Lands Faculty of Agriculture Ain Shams University

MANAGEMENT OF FERTIGATON UNDER ARID CONDITION

By

SHERIN AHMED MAHMOUD BAKR

B.Sc. (Agric. Eng.), Fac. Agric., Cairo University, (1999)M.Sc. (Agric. Sci.), Environmental Science, Ain Shams University, (2010)

Under the supervision of:

Dr. Abd El- Ghany Mohamed El- Gindy

Professor of Emeritus Agricultural Engineering, Agricultural Engineering Department, Faculty of Agricultural, Ain Shams University. (Principal Supervisor).

Dr. Khled Faran Taher El- Bagoury

Professor of Agricultural Engineering, Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University.

Dr. Wael Mahmoud Mokhtar Sultan

Head of Res. in Agricultural Engineering, Agricultural Engineering Research Institute, ARC.

Approval Sheet

MANAGEMENT OF FERTIGATION UNDER ARID CONDITION

By

SHERIN AHMED MAHMOUD BAKR

B.Sc. (Agric. Eng.), Fac. Agric., Cairo University, (1999) M.Sc. (Agric. Sci.), Environmental Science, Ain Shams University, (2010)

This thesis for a Ph.D). degree has been	approved by:	
Dr. Asaad Abdelkade	er Derbala	•••••	•••••
Prof. of Agric. Eng	g., Faculty of Agri	culture, Tanta Univers	ity.
Dr. Usama Ahmed A	li El-Behairy		•••••
Prof. of Horticultu	re, Faculty of Agr	iculture, Ain Shams U	niversity.
Dr. Khaled Faran Ta	her El- Bagoury	•••••	•••••
Prof. of Agric. Eng	g., Faculty of Agri	culture, Ain Shams Un	niversity.
Dr. Abd El- Ghany M	Mohamed El- Gine	dy	•••••
Prof. Emeritus of	f Agric. Eng. Fac	culty of Agriculture,	Ain Shams
University.			
2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -			

Date of examination: / / 2020

ABSTRACT

Sherin Ahmed Mahmoud Bakr. Management of Fertigation under Arid Condition. Unpublished Doctor of Philosophy dissertation. Ain Shams University, Faculty of Agriculture, Department of Arid Lands, 2021.

Excessive use of chemical fertilizers leads to soil destruction, water and environmental pollution, reduced productivity, low product quality, water distribution and fertilizer efficiency. Good irrigation and fertilization systems management methods is very important to prevent soil and plant conservation and achieving highest efficiency of water and fertilizer use ,to produce high quality and quantity crops for increasing local production and export. Onion and cowpea are important crops in Egyptian cultivators. Onion is strategy crops for export, and cowpea is called a poor men's meat. The current study was conducted through two open field experiments on onion and cowpea crops and seasons, to manage suitable fertigation programs through fertilizer type, form, and time vs. emitters type and discharges and to investigate their impacts on some plant attributes, yield and irrigation water productivity.

The first Experiment was carried out from open field in private farm for vegetables and fruits production, located in Hosen sector at Alexandria Cairo desert road km 70 from Cairo, El-Behiara governorate for Onion seeds, design for the first experiment was a split plot design with four replicates and two factors. Main factor: effect of fertilizer application method "F_m": Cattle manure (F₁), mixing of cattle manure and chemical fertilizer "fertigation" with rate of 30:70 (F₂) and chemical fertilizer "fertigation" (F₃). Second factor: emitters type: OT₄ "I₁", emitters built in drip line (GR 16) "I₂" and emitters, anti roots "I₃" and each sub-plot is was 3.5 m long and 3 m., wide (10.5m² ie. 1/400 fed.) and include 6 rows 50 cm wide, each 3.5 m long and the distance between sub-plots is left as 1 m to create a buffer zone

Meanwhile, the second experiment was carried out from open field in Agricultural Engineering Research Instute, Ministry of

Agriculture (AEnRI), Giza governorate, For cowpea dry seeds, the experiment included eight treatments were Emitter discharge "q" {12 L.h¹ (E1), 8 L.h¹ (E2)}, Fertigation form " F_F " { Liquid (LF), Powder (PF)} and Fertigation time " F_t " { Before irrigation (B1), After irrigation (A1)}. At the first experiment results elucidated that applying mixing of cattle manure and fertigation through anti roots emitter (F_2I_3) treatment, obtained highest values of bulb diameter " f_1 " (13.88cm), bulb diameter " f_2 " (25.10cm), bulb mass " f_2 " (195.9g), bulb actual volume " f_2 " (118cm³), moisture content " f_2 " (99.52 %), bulb yield " f_2 " (15.01Mg. fed¹), and irrigation water productivity "IWP" (6.72 kg.m¹³), respectively. Meanwhile, by applying cattle manure only through OT4 emitter (f_1I_1) obtained the lowest values of f_1 (6.24cm), f_2 (5.08cm), f_2 (95.6g), f_3 (79cm³), Mc (70.13 %), f_3 (7.80Mg. fed¹¹), and IWP (3.49 kg.m⁻³), respectively.

At the second experiment results elucidated that applying powder fertilizer (after irrigation) (P_F A_I) through emitter with 12 Lh^{-1} discharge (E_1) treatment, obtained the lowest values of number of pods / plant " P_n " (5.6 Pods. plant ⁻¹), number of seeds / pod " S_n " (6.4 seeds. pod ⁻¹), seed mass /pod " S_m " (0.97 g), number of seed index " S_I " (15.1 g), seed yield " Y_s " (0.79 Mg. fed ⁻¹) , irrigation water productivity "IWP" (3.27kg.m ⁻³). On the other hand, by applying liquid fertilizer (before irrigation) (L_F B_I) treatment through emitter with 8 Lh^{-1} discharge (E_2), obtained the highest values of P_n (5.3 Pods. plant ⁻¹), S_n (6.9 seeds. pod ⁻¹), S_m (0.97 g), S_I (14.1 g), Y_s (0.75 Mg. fed ⁻¹), and "IWP" (4.66kg.m ⁻³).

Keywords: fertigaion - drip irrigation - cowpea - onion -irrigation water productivity - yield.

CONTENTS

		Page
	LIST OF TABLES	IV
	LIST OF FIGURES	\mathbf{V}
	LIST OF PHOTOS	VII
	LIST OF ABBRIVATION	VIII
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3
2.1	Management of drip irrigation system.	3 5
2.2	Water use efficiency and irrigation water productivity.	5
2.3	Effect of drip irrigation systems on water and fertilizer	5
2.4	use efficiency. Studies of fertigation management technology.	7
2.5	Soil moisture distribution.	11
2.6	Management of Nutrient uptake.	12
2.7	Management of crop growth, development, and yield.	15
2.7.1	Onion.	15
2.7.2	Cowpea.	16
3	MATERIALS AND METHODS	21
3.1	Materials	21
3.1.1	Irrigation and fertigation systems.	21
32	Nutrient management.	23
3.2.1	Compost.	23
3.2.2	Cattle manure.	24
3.2.3	NPK fertilizer application.	24
3.3	Soil analysis.	25
3.4	Planting procedures.	26
3.5	Experimental treatments and design.	28
3.6	Emitters Evaluation.	32
3.6.1	Hydraulic system.	32
3.6.2	Water temperature and filtration.	35
3.6.3	Supporting frame.	35
3.6.4	Catch can water from emitters.	35
3.6.5	Test procedures.	35
3.6.5.1	Emitter discharge.	36
3.6.5.2	Emitter manufacture's coefficient of variations.	36

3.6.5.3	Emission uniformity.	37
3.6.5.4	Statistical uniformity coefficient.	37
3.6.5.5	Discharge variation.	37
3.7	Studied attributes.	38
3.8	Instruments.	42
3.9	Scheduling of irrigation and fertigation.	42
3.9.1	Water requirement	42
3.9.2	Irrigation interval	44
3.9.3	Scheduling of irrigation	44
3.9.3.1	Irrigation timing	44
3.9.3.2	Calculation of irrigation timing according to the evapo-	44
3.7.3.2	transpiration (ET) for the experimental area.	• •
4	RESULTS AND DISCUSSION	46
4.1	Effect of fertilizer methods and emitters type on onion	46
	bulb parameters.	
4.1.1	Bulb Diameters.	46
4.1.2	Bulb mas.	48
4.1.3	Bulb actual volume.	49
4.1.4	Moisture Content.	50
4.1.5	Bulb yield.	51
4.1.6	Irrigation water productivity.	51
4.1.7	Correlation between onion parameters.	55
4.2	Effect of emitter discharge, fertigation form and	55
	fertigation timing on growth vegetative of cowpea plant.	
4.2.1	Effect of fertigation form and fertigation timing on	55
	growth vegetative of cowpea plant at emitter discharge	
	$(121 \text{h}^{-1}).$	
4.2.1.1	Number of Pods.	55
4.2.1.2	Number of Seeds.	57
4.2.1.3	Seed Mass.	57
4.2.1.4	Seed Index.	59
4.2.1.5	Seed yield.	60
4.2.1.6	Irrigation Water Productivity	60
4.2.1.7		61
	discharge of (12 L.h ⁻¹).	
4.2.2	The relationship between fertigation form and	61
	fertigation timing on growth vegetative of cowpea plant	
	at emitter discharge (8 1 h ⁻¹):	
4.2.2.1		61
4.2.2.2	Number of Seeds	63

4.2.2.3	Seed Mass	64
4.2.2.4	Seed Index	65
4.2.2.5	Seed yield	66
4.2.2.6	Irrigation Water productivity	
4.2.2.7	Correlation between cowpea parameters at emitter discharge of (8 L.h ⁻¹).	67
4.3	Statistical analysis.	67
4.3.1	Variables definition.	68
4.3.1.1	Effect of fertilizer methods on onion bulb arameters, as affected by three emitters type.	68
4.3.1.2	Effect of fertigation form and fertigation timing on growth vegetative of cowpea plant at emitter discharge (12 L.h-1) and (8 L.h-1).	69
4.3.2	Statistical analysis for onion bulb parameters.	69
5	SUMMARY AND CONCCLUSION	73
6	REFERENCES	78
7	APPENDIX	93
8	ARABIC SUMMARY	

LIST OF TABLES

		Page
3.1	Chemical composition of well water used for irrigation in the first experiment.	21
3.2	Chemical analysis of feculent used for irrigation in the second experiment.	23
3.3	Chemical analysis for compost.	24
3.4	Chemical analysis for cattle manure.	24
3.5	Physical-chemical properties of two experimental soil.	26
3.6	The meteorological measurements monthly during 2016, 2017 and 2018 growing season.	26
3.7	Discharge "q" (nominal, mean and standard deviation "s", manufacture's coefficient of variation "CV" (%) and some hydraulic characteristics,i.e., emission uniformity "Eu" (%), statistical uniformity "Us"(%), and discharge variation "q _{var} " (%) for tested emitters at 100 kpa.	41
3.8	Data for calculate total applied water "TAW" Reference evaportranspiration, onion crop.	43
3.9	Data for calculate total applied water "TAW" Reference evaportranspiration, cowpea crop.	44
4.1	Fertilizer methods and bulb diameters " d_1 and d_2 ", as affected by three emitters.	46
4.2	Relations between fertilizer methods and bulb mass, bulb actual volume and moisture content as affected by three emitters type.	49
4.3	Relations between fertilizer methods, bulb yield and irrigation water productivity as affected by three emitters type.	52
4.4	Relations between fertigation form and fertigation timing on growth vegetative Index on cowpea plant at emitter	58
	discharge of (12 L.h ⁻¹).	
4.5	Relations between fertigation form and fertigation time on growth vegetative on cowpea plant at emitter discharge of (8 L.h ⁻¹).	62
4.6	Variables values of onion bulb parameters at fertilizer	71

methods and emitters type.

4.7 Variables values of growth vegetative of cowpea plant at fertigation form and fertigation time through emitter discharge (12 L.h⁻¹) and (8 L.h⁻¹).

LIST OF FIGURES

		Page
3.1	The first experiment layout.	30
3.2	Irrigation system layout for Exp.1.	31
3.3	The second experiment layout	33
3.4	Hydraulic test bench components	34
3.5	Cross section of emitters used in present study.	39
3.6	Cross section of emitters used in present study.	40
4.1	Relations between fertilizer methods and bulb diameters $(d_1 \text{ and } d_2)$ as affected by three emitters type.	47
4.2	Relations between fertilizer methods and Bulb mass,	47
	Bulb actual volume and moisture content as affected by	
4.3	three emitters type. Relations between fertilizer methods and bulb yield and irrigation water productivity as affected by three emitters type.	53
4.4	Correlation between bulb diameter "d ₁ " and bulb diameter "d ₂ ", bulb yield and irrigation water productivity.	56
4.5	Correlation between bulb diameter "d ₁ " and bulb mass, bulb actual volume and moisture content.	56
4.6	The relations between fertigation form and fertigation timing on seed index and its effect at emitter discharge of 12 L.h ⁻¹).	58
4.7	The relations between fertigation form and fertigation timing on number of pods / plant, irrigation water productivity and number of seeds / pod and its effect at emitter discharge of (12 L.h ⁻¹).	59
4.8	The relations between fertigation form and fertigation timing on seed mass /pod and seed yield and its effect at emitter discharge of (12 L.h ⁻¹). Correlation between seed index and both seed yield and irrigation water productivity and at emitter	60

discharge of (12 L.h⁻¹). 4.9 The relations between fertigation form and fertigation 62 timing on seed index and its effect at emitter discharge of (8 L.h⁻¹). 4.10 The relations between fertigation form and fertigation 63 timing on seed mass /pod and seed yield and its effect at emitter discharge of (8 L.h⁻¹). 4.11 The relations between fertigation form and fertigation 64 timing on on number of pods / plant,irrigation water roductivity and number of seeds / pod and its effect at emitter discharge of (8 L.h⁻¹). 4.12 Correlation between seed index and both seed yield 65 and irrigation water productivity at emitter discharge of $(8 \text{ L.h}^{-1}).$ 4.13 Correlation between seed index and both seed yield 68 and irrigation water productivity at emitter discharge of

 $(8 \text{ L.h}^{-1}).$

LIST OF PHOTOS

		Page
3.1	Onion field experiment	29
3.2	Cowpea field experiment	29