

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

## بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

## جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY







### Characterization of The Decellularized Male Rabbit Kidney as a Three- Dimensional Natural Scaffold for Tissue Engineering.

#### A Histological Study

A THESIS FOR PARTIAL FULFILMENT OF MASTER'S DEGREE IN BASIC MEDICAL SCIENCE (HISTOLOGY AND CELL BIOLOGY)

Submitted By

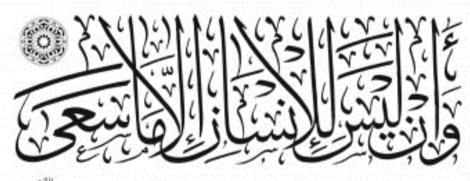
#### **Ayat Abdelnaby Elsayed Abdelaziz**

MBBCh, Demonstrator of Histology and Cell Biology Faculty of Medicine, Ain Shams University

### Under supervision of **Prof. Dr. Naglaa Medhat Abou-Rabia**

Professor of Histology and cell biology Faculty of Medicine, Ain Shams University

#### Prof. Dr. Gehan Khalaf Megahed


Professor of Histology and cell biology Faculty of Medicine, Ain Shams University

#### Assistant. Prof. Dr. Sara Abdelgawad Elsebay

Assistant professor of Histology and cell biology Faculty of Medicine, Ain Shams University

> Histology and Cell Biology Department Faculty of Medicine, Ain Shams University Cairo, Egypt 2020-2021











Praise be to **Allah**, Lord of the worlds, and prayers and peace be upon the most honorable of all creation, our master **Muhammad**. Peace be upon all the honorable prophets and messengers of **Allah**.

I would like to express my profound gratitude and respect to **Professor Dr. Naglaa Medhat Abou-Rabia** for her kindness, gentle advice, and consistent encouragement. Her continuous supervision and guidance throughout the course of this work were incomparable. Her sincere and meticulous scientific instructions aimed at perfection of this work. It was such a great honor to learn from such a great pioneer of histology.

I am also obliged to express my thanks and gratefulness to **Professor Dr. Gehan Khalaf Megahed** for her kind care, continuous valuable supervision, and constant help. Her kind constructive encouraging words kept me going and her senser reliable guidance overcame every obstacle at every step of this work.

I wish to introduce my deepest respect, appreciation and thanks to Assistant Professor Dr. Sara Abdel Gawad Elsebay for her continuous support, kindness, patience, and guidance. Her beautiful smile and gentle words made every step easier. Her experience and knowledge gave every problem a wonderful solution. I had the utmost privilege to learn from her and to lead by her example in both work and life.

Ayat Abdelnaby

I wish to express my appreciation and respect to the team of the Stem Cell Research Lab of our beloved department. They offer help and guidance to every young researcher. Also, I would like to acknowledge the help offered to me by the team of the Medical Research Centre Ain Shams University, the team of the electron microscopy unit, faculty of science, Ain Shams University, the team of the research lab, histology department, El-Azhar University, and the team of the regional center for mycology and biotechnology, El-Azhar University.

Ayat Abdelnaby

# List of Contents

| Title                          | Page no. |
|--------------------------------|----------|
| List of abbreviations          | vii      |
| List of tables                 | xi       |
| List of figures                | xiii     |
| List of histograms             | XV       |
| Abstract                       | 1        |
| Introduction                   | 3        |
| Aim of the work                | 6        |
| Review of literature           | 7        |
| Materials and methods          | 46       |
| Results                        | 90       |
| Discussion                     | 23       |
| Summary                        | 249      |
| Conclusion and recommendations | 25       |
| References                     | 254      |
| Arabic summary                 |          |

# List of Abbreviations



| <b>3D</b>       | Three-dimensional                                              |
|-----------------|----------------------------------------------------------------|
| ANOVA           | Analysis of variance                                           |
| CHAPS           | 3-[(3-cholamidopropyl) dimethylammonio]-1-<br>propanesulfonate |
| CKD             | Chronic Kidney Disease                                         |
| CMC             | Critical micelle concentration                                 |
| CO <sub>2</sub> | Carbon dioxide                                                 |
| CPD             | The critical point drier                                       |
| DAB             | Diaminobenzidine tetrahydrochloride                            |
| DAMPs           | Damage associated molecular pattern molecules                  |
| DAPI            | 4`,6-diamidino-2-phenylindole                                  |
| DCTs            | Distal convoluted tubules                                      |
| dECM            | Decellularized extracellular matrix                            |
| ECM             | Extracellular matrix                                           |
| EDTA            | Ethylenediaminetetraacetic acid                                |
|                 |                                                                |

| EGTA  | Ethylene glycol-bis tetraacetic acid          |
|-------|-----------------------------------------------|
|       |                                               |
| ESRD  | End stage renal disease                       |
| FGF   | Fibroblast growth factor                      |
|       |                                               |
| GAGs  | Glycosaminoglycans                            |
| GBM   | Glomerular basement membrane                  |
| GFR   | Glomerular filtration rate                    |
| HCl   | Hydrochloric acid                             |
| hESCs | Human embryonic stem cells                    |
| ННР   | High hydrostatic pressure                     |
| KDIGO | The Kidney Disease: Improving Global Outcomes |
| NaOH  | Sodium hydroxide                              |
| NZWR  | New Zealand white rabbits                     |
| P     | Probability of chance                         |
| PAA   | Peracetic acid                                |
| PAS   | Periodic acid Schiff's                        |
| PBS   | Phosphate buffered saline                     |
| PCR   | Polymerase chain reaction                     |
| PCTs  | Proximal convoluted tubules                   |
| PDGF  | Platelet derived growth factor                |
|       | 1                                             |

| PLGA  | Poly-lactic-co-glycolic acid       |
|-------|------------------------------------|
| RRT   | Renal replacement therapy          |
| SDC   | Sodium deoxycholate                |
| SD    | Standard deviation                 |
| SDS   | Sodium dodecyl sulfate             |
| SEM   | Scanning electron microscope       |
| TEM   | Transmission electron microscope   |
| TGF-ß | Tissue growth factor-ß             |
| VEGF  | Vascular endothelial growth factor |
| VEGF  | Vascular endothelial growth factor |

#### **Measurement units**

| Unit  | Title                          |
|-------|--------------------------------|
| °C    | Celsius                        |
| Cm    | Centimeter                     |
| Gm    | Gram                           |
| H     | Hour                           |
| IU/mL | International unit/ milliliter |
|       |                                |

| KDa    | Kilodalton               |
|--------|--------------------------|
| M      | Molarity                 |
| mg/kg  | Milligram per kilogram   |
| mg/mL  | Milligram per milliliter |
| mL/min | Milliliter per minute    |
| mmHg   | Millimeter of mercury    |
| MPa    | Megapascal               |
| w/v    | Weight/ volume           |
| Mm     | Micrometer               |

# List of Tables



| Table no. | Title                                                                                                                                                                             | Page<br>no. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| I         | specificity of the techniques for the detection of carbohydrates and glycoconjugates                                                                                              | 63          |
| 1         | The recorded weight data of kidneys of group II before freezing/thawing (a), after freezing/thawing (b) and after decellularization (c).                                          | 90          |
| 2         | Mean (mean ± standard deviation) weight of kidneys of group II (decellularization group) before freezing/thawing (a), after freezing/thawing (b) and after decellularization (c). | 218         |
| 3         | Mean area percentage (mean ± standard deviation) of collagen fibers in both renal cortex and medulla of both control group I and decellularization group II.                      | 219         |
| 4         | Mean area percentage (mean ± standard deviation) of reticular fibers in both renal cortex and medulla of both control group I and decellularization group II.                     | 221         |
| 5         | Mean area percentage (mean ± standard deviation) of elastic fibers in internal elastic laminae of arcuate arteries of both control group I and decellularization group II.        | 223         |
| 6         | <b>M</b> ean optical density (mean ± standard deviation) of glycoproteins in both renal                                                                                           | 225         |

|    | cortex and medulla of both control group I and decellularization group II.                                                                                      |     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7  | Mean optical density (mean ± standard deviation) of glycosaminoglycans in both renal cortex and medulla of both control group I and decellularization group II. | 227 |
| 8  | Mean optical density (mean ± standard deviation) of laminins in both renal cortex and medulla of both control group I and decellularization group II.           | 229 |
| 9  | Mean optical density (mean ± standard deviation) of fibronectin in both renal cortex and medulla of both control group I and decellularization group II.        | 231 |
| 10 | Mean optical density (mean ± standard deviation) of collagen IV in both renal cortex and medulla of both control group I and decellularization group II.        | 233 |
| 11 | Mean (mean ± standard deviation) thickness of GBMs of both control group I and decellularization group II.                                                      | 235 |

# List of Figures

| Figure no. | Title                                                                                                                                                           | Chapter                     | Page no. |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|
| I          | A transverse section of rabbit kidney at the hilum.                                                                                                             | Review of the Literature    | 17       |
| II         | Tissue engineering triad.                                                                                                                                       | Review of the Literature    | 22       |
| III        | The molecular composition of the renal ECM in different ECM compartments                                                                                        | Review of the Literature    | 26       |
| IV         | A photograph of a male NZWR purchased from a nearby local market.                                                                                               | Materials<br>and<br>methods | 51       |
| V          | A photograph showing that the intestine was moved away to identify the left kidney.                                                                             | Materials<br>and<br>methods | 52       |
| VI         | A photograph showing the left<br>renal artery identified, separated<br>from the left renal vein, then<br>cannulated with a cannula<br>secured by a silk suture. | Materials<br>and<br>methods | 53       |
| VII        | A photograph showing a cannulated left kidney carefully placed in an empty petri dish, weighed using the electronic scale.                                      | Materials<br>and<br>methods | 54       |
| VIII       | A photograph showing the decellularization device assembled by connecting the                                                                                   | Materials<br>and<br>methods | 55       |