

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The role of extracorporeal shockwave therapy (ESWT) in treatment of trigger finger

Thesis

Submitted for partial fulfillment of Master Degree

Presented by

Rana Adel Ahmed

M.B.B.Ch - Faculty of Medicine-Tanta University

Supervised by

Prof. Dr. Mona Mahmoud Arafa

Professor of Physical Medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

Prof. Dr. Sahar Fathi Ahmed

Professor of Physical Medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

Dr. Nermin Hassan El Gharbawy

Lecturer in Physical Medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

دور العلاج بالموجات فوق الصوتية خارج الجسم في علاج الإصبـع الزنــاد رسالة

توطئة للحصول علي درجة الماجستير في الطب الطبيعي والروماتيزم والتأهيل مقدمة من الطبيبة رنا عادل أحمد

تحت إشراف

بكالوربوس الطب و الجراحة- كلية الطب – جامعة طنطا

أ.د/ منسى محمسود عرفسة

أستاذ الطب الطبيعي و الروماتيزم و التأهيل كلية الطب- جامعة عين شمس

أ.د/ سحر فتحي أحمد

أستاذ الطب الطبيعي و الروماتيزم و التأهيل كلية الطب- جامعة عين شمس

د/ نـــرمين حسـن الغربـاوى

مدرس الطب الطبيعي و الروماتيزم و التأهيل كلية الطب- جامعة عين شمس كلية الطب

طيه الطب جامعة عين شمس 2020

سورة البقرة الآية: ٢١

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Mona Mahmoud Arafa**, Professor of Physical Medicine-Rheumatology & Rehabilitation, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under her direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Sahar Fathi Ahmed,** Professor of Physical Medicine-Rheumatology & Rehabilitation, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr.**Nermin Hassan El Gharbawy, Lecturer of Physical MedicineRheumatology & Rehabilitation, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Table of Contents

Ti	Title Pag		
•	List of Abbreviations	I	
•	List of Table	II	
•	List of Figures	IV	
•	Introduction	1	
•	Aim of the work	6	
•	Review of literature		
	Chapter (1): Trigger Finger	7	
	Chapter (2): Musculoskeletal Ultrasound	29	
	Chapter (3): Extracorporeal Shockwave Therapy	47	
•	Patients and methods	59	
•	Results	71	
•	Discussion	96	
•	Summary & Conclusion	110	
•	Recommendations	114	
•	References	115	
•	الملخص العربي		

LIST OF ABBREVIATIONS

Abbreviation	Full Form
CGRP	: Calcitonin gene related peptide
COX	: Cyclo- oxegenase
DASH	: Disabilities of arm, shoulder and hand
ESWT	: Extra corporeal shock wave therapy
FCR	: Flexor carpi radialis
FDP	: Flexor digitorum profundus
FDS	: Flexor digitorum superficialis
FPL	: Flexor pollicis longus
FR	: Flexor retinaculum
FSWT	: Focused shock wave therapy
GM CSF	: Granulocyte- macrophage colony- stimulating factor
MCP	: Metacarpophalangeal
MCP-2	: Monocyte chemotactic protein 2
IGF-1	: Insulin like growth factor 1
MSUS	: Musculoskeletal ultra sound
NF-kb	. Nuclear factor kappa light chain enhancer of
- \	activated B cells Active
NSAIDs	: Non-steroidal anti-inflammatory drugs
NPRS	: Numeric pain rating scale
PA	: Palmar aponeurosis
PIP	: Proximal inter phalangeal
PLA2	: Phospholipase A2
ROM	: Range of motion
rESWT	: Radial extracorporeal shock wave therapy
TCL	: Transverse carpal ligament
TENS	: Trans cutaneous electrical nerve stimulation
TGF-beta 1	: Transforming growth factor
US	: Ultra sound
VAS	: Visual analogue scale

LIST OF TABLE

Table No	Subjects	Page
Table (1):	Mechanism of action for shockwave	56
Table (2):	Demographic data of the patients	72
Table (3):	Distribution of finger affection	73
Table (4):	NPRS pre and post treatment.	74
Table (5):	Quick DASH score pre and post treatment	75
Table (6):	ROM "Active Flexion MCP" pre and post	
	treatment	76
Table (7):	Green's classification pre and post treatment	77
Table (8):	Presence of locking & snapping pre and post	
	treatment	78
Table (9):	ROM "Active extension PIP" pre and post	
	treatment	79
Table (10):	Thickness of A1 pulley pre &post treatment	
Table (11):	Thickness of synovial membrane pre &post	
` ,	treatment	81
Table (12):	Presence of hyper vascularization of A1 pulley as	
,	regarding number of patients pre and post	
	treatment	82
Table (13):	Correlations between duration of pain and NPRS,	_
():	Quick DASH score, ROM, thickness of A1pulley	
	and thickness of synovial membrane	
	Pretreatment.	84
Table (14):	Correlation between ROM "Active Flexion	
14610 (11)0	MCP", NPRS, Quick DASH Score and Thickness	
	of A1Pulley (mm) pretreatment.	86
Table (15):	Correlation between thicknesses of synovial	
(10)·	membrane with NPRS, Quick DASH Score,	
	ROM "Active Flexion MCP", Thickness of A1	
	Pulley and Size of nodule pretreatment	87

≰List of Table

Table No	Subjects	Page
Table (16):	Relation between Green's classification with	
	ROM "Active Extension PIP", Locking ,	
	Snapping Hyper vascularization of A1 Pulley,	
	NPRS, Quick DASH Score, ROM "Active	
	Flexion MCP", Thickness of A1 Pulley ,	
	Thickness of Synovial membrane and Size of	
	Nodule pretreatment.	88
Table (17):	Relation between ROM "Active Extension PIP"	
	with NPRS, Quick DASH Score, ROM "Active	
	Extension PIP", ROM "Active Flexion MCP",	
	and Thickness of A1 Pulley and Thickness of	
	Synovial membrane before extra corporeal shock	
	wave therapy.	89
Table (18):	Relation between hyper vascularization of A1	
	pulley, ROM "Active Extension PIP", NPRS,	
	Quick DASH Score, ROM "Active Flexion	
	MCP" Thickness of A1 Pulley (mm), Thickness	
	of Synovial membrane (mm) and Size of Nodule	
	(mm) pretreatment.	90
Table (19):	Correlation between ROM "Active Flexion	
	MCP", NPRS After, Quick DASH Score and	
	Thickness of A1 Pulley (mm) post treatment	91
Table (20):	Correlation between thicknesses of synovial	
	membrane with NPRS, Quick DASH score,	
	ROM "Active Flexion MCP" and Thickness of	
	A1 Pulley post treatment.	92
Table (21):	Relation between locking & snapping with hyper	
	vascularization of A1 Pulley, NPRS, Quick	
	DASH, ROM "Active Flexion MCP", thickness	
	of A1 Pulley and thickness of synovial membrane	
	post treatment.	94
Table (22):	Relation between hyper vascularization of A1	
	pulley with NPRS after, Quick Dash Score ROM	
	"Active Flexion MCP", Thickness of A1 Pulley	
	(mm) and Thickness of Synovial membrane	
	(mm) post treatment.	95

LIST OF FIGURES

Figure No	Subjects	Page
Figure (1):	Composite view of the palmer aponeurosis (PA)	
	pulley showing its relationship to the annular	
	pulleys and its component parts including the	
	transverse fibers of the palmer aponeurosis, the	
	transverse metacarpal ligament, and the vertical	
	septa that span these two structures	9
Figure (2):	Schematic of the fibro-osseus tunnel composed	
	of five annular and three cruciform pulleys	
	through which the flexor tendons run	13
Figure (3):	Longitudinal view of the middle finger's flexor	
	tendons (white arrows) volarly to the m	20
Figure (4):	Algorithm for the treatment of stenosing	
	tenosynovitis	21
Figure (5):	Showing Steroid injection site, roughly at the	
	level of the distal palmar crease, with the needle	
	inserted at 45° (bevel distal and upwards)	26
Figure (6):	(A) Technique for percutaneous sectioning of the	
	A1 pulley in the fingers. Needle entrance points	
	(dots) are located approximately one third the	
	distance from the distal palmar crease and two	
	thirds the distance from the proximal digital	
	crease. This corresponds to the center of the A1	
	pulley. Figure (B) Diagram depicts the location of	
	the A1 pulleys in the fingers and the A2 pulley in	
	the small finger. Half of the A2 pulleys are	20
Eigene (7). D	located in the distal palm	28
Figure (7): P	Patient with right-hand ring finger Grade 4 trigger finger.	20
Figure (8):	Transducers: (A)linear 5-12 MHZ,(B)curvilinear	20
rigure (o).	4-9MHZ,(c) compact linear 7-15 MHZ	21
Figure (9):	Position of the probe in the sonographic study	
Figure (10):	Flexor carpi radialis tendon and carpal tunnel	
Figure (10):	Sonographic appearances of the long tendons of	
	the finger,	36

Figure No	Subjects	Page
Figure (12):	Normal sonographic appearance of tendons in the	
	wrist	39
Figure (13):	Trigger finger Sonography shows hypoechoic	
	thickening of the A1 pulley (arrows) and	
	moderate tenosynovitis of the flexor digitorum	
	superficialis and profundus (Fle d s-p) tendons of	
	the middle finger. Normal A1 pulley of the ring	
	finger and the volar plates (V p) are also shown	43
Figure (14):	Different lesions found in trigger fingers. a,	
	Sagittal sonographic view of a trigger finger	
	showing thickening of the A1 pulley (white	
	arrows) associated with stenosis, tenosynovitis	
	(black arrowhead), and tendinosis (white	
	arrowhead) of the flexor superficialis tendon; m	
	indicates metacarpal head; and p, proximal	
F. (4.5)	phalanx	43
Figure (15):		
	Sagittalpower Doppler shbshsview of another	4.4
E: (10)	trigger finger.	
Figure (16):		44
Figure (17):		15
Figure (19).	finger opposite the MCP	43
rigure (16):	Comparison between thickness of A1 pulley in trigger finger (left) and contralateral healthy side	
	(right)	45
Figure (19).	Longitudinal view of flexor tendon showing	
rigure (17).	nodule lying over it	45
Figure (20):	The 3 types of devices used to generate	
g ()-	shockwaves for clinical application are shown:	
	electrohydraulic	50
Figure (21):	Techniques to generate therapeutic shock waves	52
Figure (22):	Rang of Finger motion by goniometer	62
Figure (23):	Numeric Pain Rating Scale (NPRS)	
Figure (24):	The US machine.	66
Figure (25):	Intelect radial shockwave therapy	68
Figure (26):	`Patient Receive ESWT sessions at Ahmed	
	Maher Teaching Hospital.	68

€ List of Figures

Figure No	Subjects	Page
	Distribution of affected hand	
Figure (28):	Distribution of finger affection	73
Figure (29):	Follow up of NPRS	74
Figure (30):	Follow up of Quick DASH score	75
Figure (31):	Follow up of ROM Active Flexion MCP	76
Figure (32):	Follow up of Green's classification	77
Figure (33):	Presence of locking& snapping as regards	
	number of patients pre & post treatment	78
Figure (34):	Thickness of A1 pulley pre & post treatment	80
Figure (35):	Thickness of synovial membrane pre & post	
	treatment	81
Figure (36):	Presence of hyper vascularization of A1 pulley as	
	regards number of patients pre & post treatment	82
Figure (37):	Transverse view of trigger finger showing	
	thickness of A1 pulley pretreatment (1.2mm) &	
	post treatment (0.9 mm).	83
Figure (38):	Transverse view of trigger finger showing	
	synovial membrane thickness pretreatment	
	(2.2mm) & post treatment (1.1 mm)	83
Figure (39):	Statistical significant positive correlation	
	between duration of pain with thickness of A1	
	pulley and negative correlation with ROM	
	"Active Flexion MCP" pretreatment	85
Figure (40):	Statistical significant negative correlation	
	between ROM "Active Flexion MCP" and	
	thickness of A1 Pulley pretreatment.	86
Figure (41):	Statistical significant correlation between	
	thicknesses of synovial membrane with NPRS	
		87
Figure (42):	Statistical significant negative correlation	
	between ROM "Active Flexion MCP" and	
	thickness of A1 pulley post treatment.	91
Figure (43):	•	
	thicknesses of synovial membrane with NPRS,	
	Quick DASH score, ROM "Active Flexion MCP"	_
	and Thickness of A1 Pulley post treatment	93

INTRODUCTION

Trigger finger is one of the most common causes of pain and disability of the hand (*Lee et al.*, 2019). It is a condition that occurs when the gliding movement of the tendon is blocked by the osteofibrous canal of the A1 pulley. Preventing the tendon from naturally extending and returning to its initial position (*Sharma & sah 2017*).

It's considered one of the most common hand conditions with 3% prevalence, it commonly presents in middle age women with pain, swelling and limitation of movement. It usually involves the thumb and ring fingers of the dominant hand. The disease can be primary or may occur secondary to rheumatoid arthritis, diabetes mellitus, gout, de Quervain's disease or direct tendon trauma (*Bishnu et al.*, 2018).

Primary trigger finger occurs most commonly in the middle Fifth to sixth decades of life and up to 6 times more frequently in women than men (**Teo et al., 2018**). The lifetime risk of trigger finger development is between 2 to 3%, but increases up to 10% in diabetics. The ring finger is most commonly affected, followed by the thumb (trigger thumb), middle, index, and small fingers in Patients with multiple trigger digits (*LIN et al., 2018*).