

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Accuracy of Transvaginal Ultrasound in Prediction of Latency Period in Women with Preterm Premature Rupture of Membranes

Thesis

Submitted for Partial Fulfillment of Master Degree in **Chestetric & Cynecology**

By

Ahmed Hamdi Mohammed El-Sefi

M.B.B.Ch., Faculty of Medicine – Ain Shams University – (2012)

Under Supervision of

Prof. Dr. Tarek Aly Raafat

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Prof. Dr. Ahmed Shrief AbdElhamid

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Tarek Aly Raufat**, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Ahmed Shrief**AbdElhamid, Assistant Professor of Obstetrics and

Gynecology, Faculty of Medicine, Ain Shams University,

for his sincere efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Ahmed Hamdi Mohammed El-Sefi

Tist of Contents

Title Page No.
List of Tables5
List of Figures6
List of Abbreviations
Introduction 1 -
Aim of the Work4
Review of Literature
■ Development and Anatomical Background of the Cervix
■ Preterm Pre-Labor Rupture of Membranes (PPROM) 25
■ Role of TVUS in Prediction of Latency Period in Women with PPROM
Patients and Methods
Results
Discussion
Summary
Conclusion
Recommendations
References
Arabic Summary

Tist of Tables

Table No.	. Title	Page No.
Table 1:	Demographic characteristics of the st	
Table 2:	Basal measurements of the studied cas	ses111
Table 3:	Perinatal conmplications among the st	
Table 4:	Labor findings among the studied case	s113
Table 5:	Gestational age at enrollment and among the studied cases	
Table 6:	Comparison according latency period days) regarding basal demograthment characteristics	aphic
Table 7:	Comparison according latency period days) regarding baal measurements	
Table 8:	Comparison according latency period days) regarding perinatal complication	
Table 9:	Comparison according latency period days) regarding mode of delivery	
Table 10:	Diagnostic performance of measurements in prediction of la period within two days	itency
Table 11:	Diagnostic charactersitcis of measures cutoff points in predicting la period within two days	itency

List of Figures

Fig. No.	Title Page No.
Figure 1:	The Uterus and part of the Vagina6
Figure 2:	Angles of anteflexion and anteversion7
Figure 3:	Uterine Support Structures
Figure 4:	Cervical dilatation & effacement
Figure 5:	1st stage of labour (latent & active phases)24
Figure 6:	Approach to transvaginal sonographic
8	screening of cervical length in pregnancy
	and management of pregnant women with
	a short cervix
Figure 7:	Measurement of the cervix & funnel length 86
Figure 8:	Normal cervix87
Figure 9:	Cervix in a woman with preterm labor88
Figure 10:	Cervical length in curved cervix89
Figure 11:	anterior uterocervical angle on
	transvaginal sonography93
Figure 12:	Posterior uterocervical angle on
	transvaginal sonography96
Figure 13:	<u> -</u>
_	Diagram of cervical funneling99
Figure 15:	Normal T shaped cervix
_	Funneling with Y shaped cervix
Figure 17:	
Figure 18:	Showing the posterior uterocervical angle
	in two patients on transvaginal
E' - 10	sonography
Figure 19:	Showing the anterior uterocervical angle in
Figure 90.	two patients on transvaginal sonography 107 Transvaginal ultrasound measurement of
Figure 20:	cervical length107
Figure 21:	•
S	cases
Figure 22:	Mode of delivery among the studied cases 113
	Latency period among the studied cases

Tist of Figures cont...

Fig. No.	Title	Page	No.
Figure 24:	Comparison according latency regarding BMI		117
Figure 25:	Comparison according latency regarding TLC	period	
Figure 26:	Comparison according latency regarding AFI	period	
Figure 27:	Comparison according latency regarding cerival length.	period	
Figure 28:	Comparison according latency regarding Posterior uterocervical ang	-	121
Figure 29:	Comparison according latency regarding anterior uterocervical angle	period	
Figure 30:	Comparison according latency regarding perinatal complications	-	123
Figure 31:	Comparison according latency regarding mode of delivery	period	
Figure 32:	Comparison according latency regarding birth weight	period	
Figure 33:	ROC curve for basal measurement prediction of latency period within	nts in	
Figure 34:	days Diagnostic charactersitcis of		126
.	measures cutoff points in predicting l period within two days.	atency	128

Tist of Abbreviations

Abb.	Full term
ACOG	American college of obstetrician and gynecologist
AFI	Amniotic fluid index
<i>AFP</i>	Alpha-fetoprotein
<i>AMH</i>	Antimullerian hormone
AOR	Adjusted odds ratio
AUCA	Anterior uterocervical angle
BMI	Body mass index
<i>BPP</i>	Biophysical profile
BV	Bacterial vaginosis
CDC	Centers for disease control and prevention
CI	Confidence interval
CL	Cervical length
<i>CPAP</i>	Continuous positive airway pressure
CS	Caeserian section
FIBO	International federation of gynecology and obstetrics
GBS	Group B streptococcal
HIV	Human immunodeficiency virus
HSV	Herpes simplex virus
IGFBP-1	Insulin like growth factors binding protein 1
<i>IL-6</i>	Interleukin 6
<i>IVH</i>	Intraventricular hemorrhage
	Ratio lecithin/sphingomyelin ratio
<i>MEMU</i>	Maternal fetal medicine unit
MMPs	Matrix metalloproteinase
<i>NEC</i>	Necrotizing entoocolitis

Tist of Abbreviations cont...

Abb.	Full term
NICHD	National institute of child health and human development
NSTs	$Nonstress\ tests$
<i>PAMG</i>	Placental alpha micro globulin 1
PUCA	Posterior uterocervical angle
<i>PMD</i>	Paramesonephric duct
PP12	Placental protein 12
<i>PPROM</i>	Preterm prelabor rupture of membrane
<i>PROM</i>	Prelabour rupture of membrane
<i>ROC</i>	Receiver operating characteristics curve
<i>RR</i>	Relative risk
<i>SMFM</i>	Society for maternal fetal medicine
STDs	Sexually transmitted disease
<i>TIMMPs</i>	Tissue inhibitors of MMPs
<i>TLC</i>	Total leukocyte count
TVUS	Transvaginal ultrasound
<i>VD</i>	Vaginal delivery

Introduction

rupture of membranes (PROM) refers relabor rupture membranes before the of onset uterine contractions (previously known as premature rupture of membranes); PPROM refers to PROM before 37+0 weeks of is responsible for. associated It or approximately one-third of preterm births and the single most common identifiable factor associated with preterm delivery (Jantien et al., 2014).

PPROM occurs in 3 percent of pregnancies approximately 0.5 percent of pregnancies <27 weeks, 1 percent of pregnancies 27 to 34 weeks, and 1 percent of pregnancies 34 to 37 weeks (*Jantien et al.*, *2014*).

The fetus and neonate are at greater risk of PPROM-related morbidity and mortality than the mother. Prematurity-related morbidity varies with gestational age and is higher in the setting of chorioamnionitis. Fetal exposure to intrauterine inflammation has been associated with an increased risk of neuro developmental impairment (*Soraisham et al.*, 2009).

The initial evaluation of premature preterm rupture of membranes (PPROM) should include a sterile speculum examination to document ROM. Maternal vital signs should be documented as well as continuous fetal monitoring initially to establish fetal status. Ultrasonographic documentation of

gestational age, fetal weight, fetal presentation, and amniotic fluid index should be established. Digital examination should be avoided, but visual inspection of the cervix can accurately estimate cervical dilatation. Digital examination of the cervix with PPROM has been shown to shorten latency and increase risk of infections without providing any additional useful clinical information (Simhan et al., 2005).

If after initial evaluation of the mother and fetus, they are both determined to be clinically stable, expectant management of PPROM may be considered to improve fetal outcome. The primary maternal risk with expectant management of PPROM is infection. This includes chorioamnionitis (13-60%), endometritis (2-13%), sepsis (< 1%), and maternal mortality (1-2 cases per 1000). Complications related to the placenta include abruption (4-12%) and retained placenta or postpartum hemorrhage requiring uterine curettage (12%) (*Mercer et al.*, 2004).

The key decision is whether to induce labor (or perform cesarean delivery) or to manage the pregnancy expectantly. Prolonged latency after PPROM at 23 to 34 weeks does not worsen neonatal prognosis (Lorthe et al., 2017).

So, Expectant management in the setting of PPROM, and in the absence of obstetric complications, is considered beneficial to the fetus by increasing gestation age at birth (*Morris et al.*, 2016)

The term latency refers to the time between membrane rupture and delivery. Latency is an important factor for neonatal survival in these patients (Park et al., 2006), Studies showed that latency period after PPROM is associated with a higher infant mortality rate specially when occur before 30 weeks' gestation, with pulmonary disease being the major cause of death (Pasquier et al., 2007).

So having adequate knowledge about latency period after PPROM and conducting appropriate management such as early referring to well-equipped center, clinicians can save mother and fetus.

Digital vaginal examination is avoided in these women as it increases the risk of infection and shown to decrease the latent period of entering into labor (Vermillion et al., 2000).

Transvaginal sonographic assessment of cervix, although deemed to be safe, has not been much studied for the prediction of time to delivery in women having preterm premature rupture of membranes (Tsoi et al., 2004).

So, the objective of this study will be to assess the Accuracy of cervical parameters measured by transvaginal sonography, that is, posterior uterocervical angle, anterior uterocervical angle and cervical length in prediction of latency period in Women with Preterm Premature Rupture of Membranes.