

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Marginal Integrity and Fracture Resistance of Endocrowns Restoring Maxillary Premolars using Different Materials (An In Vitro Study)

Thesis

Submitted to Fixed Prosthodontics Department Ain Shams University for the Partial Fulfillment of the Requirements of the Master Degree of Science in Fixed Prosthodontics

Βγ **Omar Tarek Farouk Abd El-Hady**

BDS Faculty of Dentistry, Mansoura University (2014)
Email: <u>otaikot@gmail.com</u>
Phone number: 01094422611

Faculty of Dentistry Ain Shams University 2021

Supervisors

Dr. Marwa Mohamed Wahsh

Assistant Professor of Fixed Prosthodontics Faculty of Dentistry, Ain Shams University

Dr. Ahmed Khaled Aboelfadl

Assistant Professor of Fixed Prosthodontics Faculty of Dentistry, Ain Shams University

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

No words can express my deepest thanks and sincere gratitude as well as appreciation to **Dr.**Marwa Mohamed Wahsh, Professor of Fixed Prosthodontics, Ain Shams University, who provided me with every support and helped me through every part in my clinical and academic career and gave me all the help and support

I want to express my profoundest gratitude to **Dr.**Ahmad Khaled Abo Cl-Fadl, Assistant Professor of Fixed prosthodontics, Faculty of Dentistry, Ain Shams University. From finding an appropriate subject in the beginning, to the process of writing the thesis, Dr. Ahmed offered his unreserved help, guidance, good advice, support and friendship.

Finally, Words cannot express enough thanks to whole staff members in department of fixed Prosthodontics for helping me from the beginning of this project and throughout my work in the department.

Special thanks to **Mr. Mahmoud Rashed** and **Alaqsa dental lab and technology** for their efforts and help in the practical steps in this thesis.

Omar Tarek Farouk Abd El-Wady

Dedication

This work is dedicated to

My dear grandparents,

Precious parents and sister and

My Beloved uncles

List of Contents

Title	Page No.
List of Tables	6
List of Figures	7
Introduction	1 -
Review of Literature	4
Statement of the Problem	31
Study Objective	32
Material and Methods	33
Results	65
Discussion	70
Summary	79
Conclusions	81
Recommendations	82
References	83
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table 1:	Materials description, chemical manufacturer and batch number study.	used in this
Table 2:	Properties of IPS e.max CAD blocks	:34
Table 3:	Properties of IPS: e-max ceran porcelain:	•
Table 4:	Properties of BIOHPP:	36
Table 5:	The mean, standard deviation (SI microns of Marginal gap of different	
Table 6:	The mean, standard deviation (SI MPa of fracture resistance of different	

List of Figures

Fig. No.	Title	Page No.
Figure 1:	IPS e.max CAD blocks LT A2 / I 12	35
Figure 2:	e.max ceram Dentin A2/Tl 1	36
Figure 3:	Modified PEEK block	37
Figure 4:	Crea.lign composite veneer	37
Figure 5:	Extracted intact maxillary premolars	38
Figure 6:	Periapical x-ray after endodontic treats	ment 40
Figure 7:	Decorticated tooth embedded in epoxy 2mm away from (C.E.J).	
Figure 8:	Desktop of Rhinoceros program	42
Figure 9:	Virtual design of cavity preparation (E occlusal surface, 4mm buccolingua mesiodistal, 4mm intrapulpal, 20 tota of divergence)	al, 3mm l Degree
Figure 10:	Virtual preparation model STL file was substrate resembling tooth structure by purple arrow	showed
Figure 11:	A specially designed attachment sh pieces' holder (A, B) and 2 joints (1, 2).	•
Figure 12:	Tooth specimen had been held with housing.	
Figure 13:	5x - 400 Arum milling machine	45
Figure 14:	Relation of milling burs to tooth before	milling 45
Figure 15:	Standardized endocrown preparation - 400 Arum milling machine under coolant	copious
Figure 16:	Virtual model of cavity preparation	47
Figure 17:	Occlusal view of endocrown design in e	xocad 48

List of Figures cont...

Fig. No.	Title Page No).	
Figure 18:	Distal view of endocrown design on exocad	48	
Figure 19:	Axial view showing length of palatal cusp		
Figure 20:	Mesial view of endocrown	49	
Figure 21:	Axial view showing length of buccal cusp	50	
Figure 22:	Standard parameters	51	
Figure 23:	Occlusal view showing cement gap and path of insertion of endocrown	51	
Figure 24:	Die spacer throughout the preparation	52	
Figure 25:	Monolithic e.max endocrown	52	
Figure 26:	Occlusal view of monolithic e.max endocrown	53	
Figure 27:	Crystallization cycle	53	
Figure 28:	Monolithic e.max endocrown after crystallization	54	
Figure 29:	Bilayered e.max core	55	
Figure 30:	Visio.sil transparent silicon	55	
Figure 31:	Silicon index over bilayered e.max core	56	
Figure 32:	Silicon index	56	
Figure 33:	Visio.link for bonding composite veneer over PEEK core	57	
Figure 34:	Silicon index over peek core	58	
Figure 35:	Bre.lux powerunit (light cure system)	58	
Figure 36:	Bredent polishing kit	59	
Figure 37:	Bilayered PEEK endocrown	59	
Figure 38:	Acid etching of fitting surface of endocrown	60	
Figure 39:	Endocrown after cementation	61	

List of Figures cont...

Fig. No.	Title	Page No.
Figure 40:	Digital microscope	62
Figure 41:	Ruler used for measuring	63
Figure 42:	3 equidistant points used for marginal gap on each surface	_
Figure 43:	Fracture resistance testing e-max m	nonolithic 64
Figure 44:	Fracture resistance testing endocrown	
Figure 45:	Bar chart representing margina different groups	
Figure 46:	Bar chart representing fracture redifferent groups.	
Figure 47:	Occlusal view showing fractured lithium disilicate endocrown	
Figure 48:	Occlusal view showing fracture lithium disilicate endocrown	
Figure 49:	Occlusal view of fractured PEEK en	docrown69
Figure 50:	Occlusal view showing fractured lithium disilicate endocrown involvi	

Introduction

The conventional restoration protocol for endodontically treated teeth with excessive coronal loss has been metal post and core followed by a complete crown. ⁽¹⁾ Initially, the post was thought to reinforce the remaining tooth structure. ⁽²⁾ Previous studies have reported adequate clinical post adhesion to tooth structure, ⁽³⁾ whereas others have shown variable results with high incidences of root fracture, indicating that excessive removal of tooth structure to place a post further weakens the root. ⁽⁴⁾

Teeth with excessive coronal loss can be restored with the use of the endocrown ⁽⁵⁾. The advances in adhesion, made endocrowns a good treatment alternative for teeth with short clinical crowns and calcified, short, or curved root canals that make post and core restorations impossible. ⁽⁶⁾ The monoblock nature of endocrowns would support more stress loading than the multi-interfacial nature of conventional restorations. ⁽⁷⁾ In addition, Endocrowns can also be used in patients with limited interocclusal space, which prevents adequate thickness for both the ceramic veneer and the metal or ceramic framework. ⁽⁸⁾

Previous studies suggested that endocrowns may perform similarly or better than the conventional treatments using intra-radicular posts, direct composite resin or inlay/onlay restorations. ⁽⁹⁾ However, the question that remains to be answered is the suitability of endocrowns to restore endodontically treated maxillary premolars, due to the decreased surface of adhesion together with the unfavourable ratio between crown base and crown height which might cause high moment of force. ⁽¹⁰⁾

👺 Introduction

Maxillary premolars play a very important role in esthetic appearance due to their strategic location in oral cavity⁽¹¹⁾, so that matching color between indirect restorations and remaining premolar structure play an important role in esthetic appearance of the patient.

The materials of choice for the fabrication of endocrowns have been reinforced, acid etchable monolithic ceramics because they provide mechanical strength enough to withstand occlusal tooth load and adequate bond strength to tooth structure. (12) In patient with high esthetic demand bilayered systems are commonly used with an inner layer of high-strength core ceramic and an outer layer of esthetic veneering ceramic. The load-bearing ability of a bilayered ceramic crown is widely assumed to be lower than monolithic ceramic ones. (14)

The addition of veneering porcelain to lithium disilcate cores was supposed to decrease the fatigue strength, however recent theoretical work suggests that it is actually the total ceramic thickness and not the core thickness only that is the significant determinant of load-bearing ability. This implies that if a constant total thickness of ceramic is maintained, the ratio of the esthetic porcelain instead of the stronger core porcelain can be increased without reducing the load-bearing ability of the ceramic crown. Furthermore, the addition of veneering porcelain over lithium disilicate core can increase overall strength of bilayered lithium disilicate ceramics. (16)

BioHPP is a biopolymer material containing 20% ceramic fillers was introduced with good mechanical properties and excellent biocompatibility. (17) The major advantage of this modified PEEK material