

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

DECREASING THE NEGATIVE ECOLOGICAL AND ECONOMICAL EFFECTS FOR CORROSION PROBLEMS OF METALLIC EQUIPMENT IN OIL FIELDS

Submitted By Mohamed Abd El-Moneim Ahmed Shaban

B.Sc. of Science, Faculty of Science, Ain Shams University, 1984

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 1993

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

DECREASING THE NEGATIVE ECOLOGICAL AND ECONOMICAL EFFECTS FOR CORROSION PROBLEMS OF METALLIC EQUIPMENT IN OIL

FIELDS

Submitted By Mohamed Abd El-Moneim Ahmed Shaban

B.Sc. of Science, Faculty of Science, Ain Shams University, 1984 Master in Environmental Sciences, Institute of Environmental Studies and Research.

Ain Shams University, 1993

A Thesis Submitted in Partial Fulfillment The Requirement for the Doctor of Philosophy Degree

Environmental Sciences Department of Environmental Basic Sciences

Fran Hames

This thesis was discussed and approved by:

The Committee 1-Prof. Dr. Eman Hamed Ismail

Prof. of Inorganic Chemistry Faculty of Science Ain Shams University

2-Prof. Dr. Tarek Mohamed Salama Tarek Salama

Prof. of Chemistry Faculty of Science Al-Azhar University (Boys)

3-Prof. Dr. Mohamed Attia Megahd

Prof. of Physical Chemistry, Head of Petroleum Uses Department Petroelum Research Institute

M. Kharl 4-Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Analytical & Inorganic Chemistry Faculty of Science

Ain Shams University

2021

DECREASING THE NEGATIVE ECOLOGICAL AND ECONOMICAL EFFECTS FOR CORROSION PROBLEMS OF METALLIC EQUIPMENT IN OIL FIELDS

Submitted By Mohamed Abd El-Moneim Ahmed Shaban

B.Sc. of Science, Faculty of Science, Ain Shams University, 1984

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 1993

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Analytical & inorganic Chemistry Faculty of Science Ain Shams University

2-Prof. Dr. Mohamed Attia Megahd

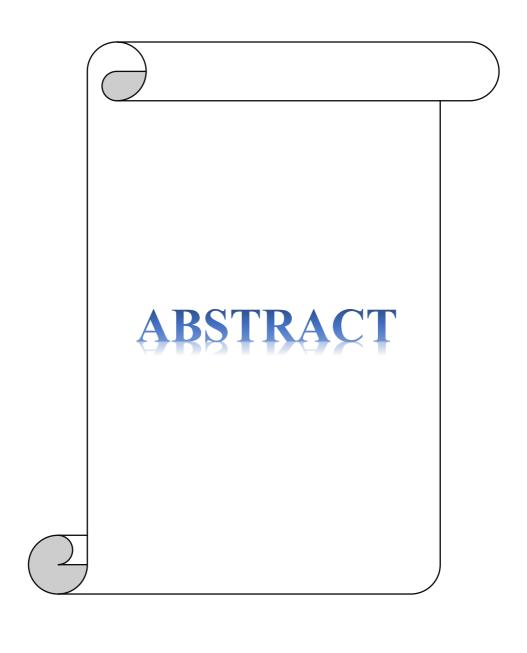
Prof. of Physical Chemistry, Head of Petroleum Uses Department Petroelum Research Institute

Acknowledgement

At the beginning, praise is to Almighty Allah, the lord of the world, whose guidance, blessings and help enabled me to take my first step on the path of improving my knowledge through this humble effort.

My grateful acknowledge for **Prof. Dr. Mostafa Mohamed Hassan Khalil**, Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University, for his kind supervision, precious guidance, helpful instructions, and powerful support.

My profound and sincere thanks to **Prof. Dr. Mohamed Attia Migahed,** Professor of Physical Chemistry and Head Of Petroleum


Applications Department, Egyptian Petroleum Research Institute, for his great support, abounding patience, efforts, and the time he spent in reviewing the thesis. It would have been impossible to achieve this work without his continuous support along the entire course of the study.

Special grateful thanks and indebted appreciation go to **Dr. Mahmoud Mohamed Fathy Shaban,** Doctor of Applied Organic Chemistry, Egyptian Petroleum Research Institute "EPRI", for his valuable advices and continuous criticism during all steps of this work. I would really like to express my deepest gratitude and appreciation to my mother for their invaluable help, continual

encouragement and moral supports. I wish also to say to my mother:"
There are no words to match my gratitude".

Lastly, but not least, I would like to thank my wife and my family for the patience, understanding and unstinting support they gave me throughout my efforts to complete this project. Finally, but most important, I thank Allah Almighty again on all things in my life.

Mohammed Abd el Monem Ahmed

ABSTRACT

Title: Decreasing the negative ecological and economical effects for corrosion problems of metallic equipment in oil fields

By

Mohammed Abd El Monem Ahmed Shaban

Chemistry Department, Faculty of Science, Ain Shams University

Degree: Doctor of Philosophy (Ph.D.) of Science in Environmental

Science, Environmental Studies and Research Institute, Ain Shams University,

2020.

Abstract

Citric acid (tricarboxylic acid) containing three carboxyl functional groups (-COOH) was used to synthesize three compounds of triquaternary ammonium trimeric cationic surfactants. The reaction procedures were carried out by reaction of tricarboxylic acid with 2-(2-Chloroethoxy) ethanol to yield tri-chloro alkyl tri-ester (**AE**). The tri-chloro alkyl tri-ester was quaterinized by different tertiary nitrogen atoms namely: Tri-*n*-butyl amine, Tri-*n*-octyl amine, and Tri-*n*-dodecyl amine to produce three tricationic triquaternary ammonium trimeric salts acting as surface-active agents. In addition, the reaction of 3-pyridinyl methanol and 2-(dimethyl amino) ethanol was quaterinized with 1-Bromododecane to produce two quaternary ammonium monomeric cationic surfactants. The chemical structures of the synthesized monocationic and tricationic surfactants were confirmed using micro-elemental analysis, FTIR spectroscopy and ¹HNMR Spectroscopy. The synthesized triquaternary ammonium trimeric

cationic surfactants and monocationic surfactants were evaluated as corrosion inhibitors for S90 carbon steel in the deep oil wells formation water by various electrochemical techniques such as potentiodynamic polarization measurements and electrochemical impedance measurements (EIS). Moreover, the quantum chemical calculations were used to study the corrosion inhibition efficiency of the prepared triquaternary ammonium tricationic surfactants and monocationic surfactants. The surface morphology of the carbon steel alloy in the deep oil wells formation water in the absence and presence of the selected prepared compounds was determined using Atomic force microscopy (AFM) technique. AFM technique confirmed that the prepared cationic surfactants have protective properties for carbon steel in the deep oil wells formation water. The corrosion inhibition efficiency of the synthesized triquaternary ammonium trimeric cationic surfactants and monomeric cationic surfactants depends on their chemical structures and their concentrations.

<u>Keywords:</u> Cationic surfactants, Corrosion inhibitor, S90 steel, oil wells formation water, EIS, Polarization, AFM, Quantum chemical calculations, Adsorption process.

CONTENTS

Contents

Topics	Page
Abstract	I
Contents	III
List of tables	VII
List of figures	IX
List of schemes	XIV
List of abbreviations	XV
AIM AND SCOPE OF THE WORK	XVII
1. Chapter 1. Introduction	1
1.1. Corrosion.	1
1.1.1. The factors which affected on the corrosion process	2
1.1.2. Classification of corrosion	2
1.1.21.Corrosion according to the temperature	2
1.1.2.1.1. High-temperature corrosion: from 100°C to 1000°C	2
1.1.2.1.2. Low-temperature corrosion: from 25°C to 80°C	2
1.1.2.2. Another classification	2
1.1.2.3. Preferred classification.	3
1.1.2.3.1. Wet corrosion	3
1.1.2.3.2. Dry corrosion	3
1.1.3. Corrosive environment	4
1.1.4. Types of steel	4
1.1.5. Forms of corrosion	6
1.1.5.1. Uniform corrosion	6
1.1.5.2. Galvanic corrosion	7
1.1.5.3.Crevice corrosion.	8

Contents

1.1.5.4. Pitting corrosion.	9
1.1.5.5. Intergranular corrosion.	10
1.1.5.6. Selective leaching	11
1.1.5.7. Erosion corrosion	11
1.1.5.8. Stress corrosion	12
1.1.5.9. Corrosion by cavitation	13
1.1.5.10. Corrosion by hydrogen embrittlement and blistering	14
1.1.6. Economic and impact cost of corrosion	15
1.1.6.1. Cost elements.	16
1.1.6.2. The global impact of corrosion	17
1.2 Surfactants	19
1.2.1 Classifications of surfactants	20
1.2.1.1. Anodic surfactants	20
1.2.1.2. Cationic surfactants	21
1.2.1.3. Non-ionic surfactants	22
1.2.1.4. Amphoteric (zwitterionic) surfactants	22
1.2.2. Gemini (dimeric) surfactants	23
1.2.3. Trimeric surfactants	24
1.2.4. Mechanism of surfactants	26
1.2.4.1. Adsorption of surface active agents	28
1.3. Review of literature	32
2. Materials and experimental techniques	60
2.1. Materials	60
2.2. Instrumentation	61
2.3. Synthesis	62
2.3.1. Synthesis of tri-quaternary ammonium trimeric cationic surfactants based on citric acid and 2-(2-Chloroethoxy) ethanol	62
2.3.2. Synthesis of quaternary ammonium monomeric cationic surfactants	63