

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Structural Engineering Department

Punching Behaviour of Flat Slab Interior Column Connection with Openings

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Civil Engineering

Structural Engineering Department

By

Eng.Fatma Sheta Mohammed Abdel-Razeq

Bachelor of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2017

Supervised By

Prof.Dr Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures, Structural Engineering Department, Faculty of Engineering, Ain Shams University

Dr. Ezz El-din Mostafa Salah El-Deen

Assistant Professor, Structural Engineering Department, Faculty of Engineering, Ain Shams University

Cairo - (2021)

Ain Shams University Faculty of Engineering Structural Engineering Department

Punching Behaviour of Flat Slab Interior Column Connection with Openings

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Civil Engineering

Structural Engineering Department

By

Eng. Fatma Sheta Mohammed Abdel-Razeq

Bachelor of Science in Civil Engineering
(Structural Engineering)

Faculty of Engineering, Ain Shams University, 2017

THESIS APPROVAL

Examiners' Committee	<u>Signature</u>
Prof. Dr. Magdy El-Said Ali Kassem	
Professor of Reinforced Concrete Structures	
Faculty of Engineering - Cairo University	
Prof. Dr. Ahmed Hassan Ahmed Ghalab	
Professor of Reinforced Concrete Structures	
Faculty of Engineering – Ain Shams University	
Prof. Dr. Ayman Hussein Hosny Khalil	
Professor of Reinforced Concrete Structures	
Faculty of Engineering – Ain Shams University	

Date: February 2021

Statement

This thesis is submitted as partial fulfilment of the requirements for the degree

of Master of Science in Civil Engineering (Structural Department), Faculty of

Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has

been submitted for a degree or a qualification at any other scientific entity.

Fatma Sheta Mohammed

Signature

Date: February 2021

Researcher Data

Name : Fatma Sheta Mohammed Abdel-Razeq

Date of birth : 28th August 1994

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Civil Engineering

Field of specialization : Civil Engineering

University issued the degree : Ain Shams University

Date of issued degree : 2017

Current job : Structural Design Engineer

ABSTRACT

Flat slabs system is being used in construction nowadays, as it provides larger clear ceiling height, as well as being aesthetically appealing. Sometimes mechanical, electrical ducts and other utilities needs require opening to be positioned near slab-column connection. These openings discontinue the natural load path of the structure and increase the risk of punching shear failure, This type of failure is the major disadvantage of flat slab system as it is a sudden failure and occurs when the shear stresses due to the transferred load and unbalanced moments exceed the slab's capacity with no warnings.

The main objective of this study is to investigate the punching behavior of flat slab interior column connection with openings. To fulfill this objective, numerical finite element models were constructed focusing on five main parameters, namely, the opening size and location, the flexural reinforcement ratio, column aspect ratio, the eccentricity of the applied load, and the existence of shear reinforcement. Twenty-six full scale specimens were conducted using the finite element analysis program ANSYS 19. The slabs were divided into two main groups, as the first group was with slab dimensions of (3000x3000x200) mm, and with various flexural reinforcement ratio ranging from 0.8% to 1.5%, and the second group was with slab dimensions of (4000x4000x250) mm, and with constant flexural reinforcement ratio of 1%, both groups have openings with different sizes and locations except two control specimens with no openings one for each group. Also, columns with different aspect ratios were investigated, the first group was with control column of size (400x400) mm investigated with column aspect ratio of (1:1, 3:2, and 2:1), and the second group was with control column of size (500x500) mm investigated with column aspect ratio of (1:1, and 3:2). All specimens were investigated under the effect of concentric load except one sub-set of the second group was under the effect of eccentric load. Also, five specimens of the second group were investigated with additional vertical shear reinforcement.

The existence of openings reduced the punching shear capacity, and the size and location of the placed opening had a major effect on the punching shear resistance as the increasing of opening size caused a reduction in punching shear strength approximately 10%. On the other hand when the opening was located at distance "d" from the column's face and compared to the opening adjacent to the column's face, the punching shear strength increased ranging by 3.7-21%.

Other parameters such as different column aspect ratio of (1:1, 3:2, and 2:1) has a minor effect on the punching shear strength as the increase of column aspect ratio slightly decreased the punching. As the flexural reinforcement ratio increased from 0.8% to 1%, and from 0.8% to 1.5%, the punching shear strength increased by 9.6%, and 20%, respectively.

Adding stirrups as a vertical shear reinforcement had a minor effect on the punching shear strength of flat slabs with openings near to column's face as the punching shear resistance slightly increased ranging from 1 to 9.5%. on the other hand, applying eccentric load caused a reduction in punching shear strength ranging by 8.2-16%.

Keywords: flat slab, punching shear failure, punching shear strength, opening size, opening location, column aspect ratio, shear reinforcement, load eccentricity, flexural reinforcement, finite element analyses, ANSYS.

ACKNOWLEDGMENT

First of all, great thanks to almighty **ALLAH** for helping, and guiding me accomplish this thesis.

I wish to express my deep and sincere appreciation to my supervisor **Prof. Dr. Ayman Hussein Hosny Khalil,** for his continuous support, help, motivation, and encouragment since the beginning which kept me motivated to finalize this thesis in its current form.

I would like to thank my supervisor **Dr. Ezz El-Din Mostafa Salah El-Din** for his effort, and his appreciated support to complete this research.

Next, to my beautiful **mother**, who always supported and motivated me endlessly with her unconditional love to accomplish my thesis.

Finally, I would like to express my deep appreciation to all my family, my beloved **sister**, and **my father** for their endless support.

Table of contents

ABSTRACT	I
ACKNOWLEDGMENT	. III
Table of contents	. IV
List of Tables	VII
List of Figures	VIII
List of Abbreviations	ίV
List of Symbols	XV
CHAPTER 1	1
INTRODUCTION	1
1-1 General	1
1-2 Punching shear failure of flat slabs	1
1-3 Openings creation in flat slabs	2
1-4 Goals and objectives	2
1-5 Methodology	2
1-6 Outline of thesis	3
CHAPTER 2	4
LITERATURE REVIEW	4
2-1 Introduction	4
2-2 Punching shear in flat slabs	4
2-3 Openings in flat slabs	5
2-4 Shear transfer mechanism in R.C members	5
2-4-1 Shear stresses of the uncracked section in the flexural compression region.	5
2-4-2 Aggregate interlock	6
2-4-3 Dowel's action	7
2-4-4 The transfer of residual tensile stresses	7
2-5 Punching shear failure	7
2-6 Topics of previous research	8
2-6-1 Punching behavior of flat slabs without openings.	8
2-6-2 Punching behavior of flat slabs with openings and with no sh	ıear
reinforcement.	. 14

2-6-3 Punching behavior of flat slabs with openings and with shear rein	nforcement.
	18
2-6-4 The shear resistance factor (β) and the distribution of shear stre	sses due to
unbalanced moment.	19
2-7 Punching shear design code provisions	23
2-7-1 EUROCODE 2-2004	23
2-7-2 ACI 318-19	28
2-7-3 ECP 203-2018	31
CHAPTER 3	35
FINITE ELEMENT MODEL VALIDATION	35
3-1 Introduction	35
3-2 Mathematical model	35
3-2-1 Element types	36
3-2-2 Real constant	38
3-2-3 Material properties	38
3-2-4 Geometry and finite mesh	42
3-2-5 Loads and boundary conditions	46
3-3 Evaluation of analytical results	48
3-3-1 Load-deflection curve	49
3-3-2 Cracking patterns	50
CHAPTER 4	52
PARAMETRIC STUDY	52
4-1 General	52
4-2 Punching shear stress	52
4-3 Specimens details	53
4-4 Finite element models	66
4-4-1 Element types	66
4-4-2 Material model	67
4-4-2-1 Concrete model	67
4-4-2-2 Steel reinforcement rebar element	68
4-4-2-3 Steel plate element	70

4-4-3 Geometery and finite mesh	70
4-4-4 Loads and boundary conditions	78
4-5 Results and discussion	80
4-5-1 Cracking pattern and failure modes	80
4-5-2 The effect of opening size and location	95
4-5-2-1 Load deflection behavior	100
4-5-3 The effect of flexural reinforcement ratio	101
4-5-3-1 Load deflection behavior	104
4-5-4 The effect of column aspect ratio	104
4-5-4-1 Load deflection behavior	110
4-5-5 The effect of load eccentricity	113
4-5-5-1 Load deflection behavior	118
4-5-6 The effect of vertical shear reinforcement	120
4-5-6-1 Load deflection behavior	125
4-6 Comparison between analytical results and code provisions	129
4-6-1 Opening size and location	130
4-6-2 Flexural reinforcement ratio	130
4-6-3 Column aspect ratio	130
4-6-4 Vertical shear reinforcement (Stirrups)	131
CHAPTER 5	137
SUMMARY, CONCLUSION, AND RECOMMENDATIONS	137
5-1 Summary	137
5-2 Conclusions	138
5-3 Advices to structural engineers	140
5-4 Recommendations for future work	140
REFERENCES	141

List of Tables

Chapter (2)

Table (2-1) Details of the test specimens and failure load, Ahmed[2015] 10
Table (2-2) Calculated shear strength and effectiveness of various reinforcement forms,
Kalman[2018]12
Table (2-3) Comparison between experimental shear stresses and predicted shear stresses at
failure
Table (2-4) Values of K for rectangular loaded areas, Eurocode 2-2004
Chapter (3)
Table (3- 1) Mechanical properties for concrete model
Table (3-2) Properties of materials for steel reinforcement model
Table (3-3) Properties of materials for steel plates model
Table (3-4) Comparison of experimental and numerical analyses results
Chapter (4)
Table (4- 1) Description and details of all specimens
Table (4-2) Material properties of concrete model for all specimens
Table (4-3) Properties of materials for steel reinforcement model
Table (4- 4) Properties of materials for steel plates model
Table (4- 5) Results of finite element analysis models
Table (4- 6) Analytical results of the opening size and location effect
Table (4-7) Analytical results of flexural reinforcement steel ratio effect
Table (4-8) Analytical results of the effect of column aspect ratio
Table (4-9) Analytical results of the effect of load eccentricity
Table (4- 10) Analytical results of the effect of vertical shear RFT
Table (4- 11) Comparison between the analytical results and the predicted values by the
codes provisions

List of Figures

Chapter (1)

Fig. (1-1) Flat slab system	1
Fig. (1-2) Punching shear failure phenomenon of flat slab	2
Chapter (2)	
Fig. (2-1) Punching shear failure at the slab-column connection of flat slab	4
Fig. (2- 2) Illustration of Kani's teeth model	6
Fig. (2- 3) Conceptual sketch for aggregates' interlock	6
Fig. (2- 4) Punching shear failure	7
Fig. (2-5) (a) Effect of stirrups spacing, b) Effect of stirrups diameter, Rasha[2017]	9
Fig. (2- 6) Typical specimen geometry "dimensions in mm", Ahmed[2015]	10
Fig. (2-7) load-deflection diagrams of slabs with different reinforcement system	ms,
Kalman[2018]	13
Fig. (2-8) The layout of flexural reinforcement and shear reinforcement for the test series	A2-
0-A2-6-A2-8-A2-10, Philipp[2019]	13
Fig. (2-9) Comparison of predictions and experimental results ,Philipp[2019]	. 14
Fig. (2-10) Geometrical description of test specimens. (a) Dimensions of test specimens	and
(b) geometrical configuration of openings for each specimen ,Taehun[2015]	16
Fig.(2-11) Relationship of β -factors to ratio of critical perimeter to full critical perimeter	for
columns locations, F.O.Idagu[2017]	20
Fig. (2-12) Sketch of the column at the cantilevered corner, F.O.Idagu[2017]	20
Fig. (2- 13) Control perimeter near an opening, Eurocode 2-2004.	23
Fig. (2- 14) Basic control perimeter, Eurocode 2-2004.	24
Fig. (2- 15) Reduced basic perimeter for edge and column, Eurocode 2-2004	26
Fig. (2- 16) Recommended values for β, Eurocode 2-2004.	27
Fig. (2- 17) Critical sections for two-way shear in the slab with shear reinforcement,	ACI
318-19	28
Fig. (2- 18) Effect of openings and free edges, ACI 318-19.	29
Fig. (2- 19) Critical sections for punching shear, ECP 203-2018.	31
Fig. (2- 20) Critical section of punching shear for edge column in the slab with sl	hear
reinforcement, ECP 203-2018.	32
Fig. (2-21) effects of openings in flat slabs on the critical section of punching shear, I	ECP
203-2018.	32