

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

"Prevalence of *mecC* Gene among Methicillin Resistant Staphylococcus Aureus (MRSA) Isolated from Patients in Ain-Shams University Hospital"

Thesis

Submitted for Partial Fulfillment of the Requirements for M.D Degree in Medical Microbiology and Immunology

By

Heba Raafat Mohamed Shebl

M.Sc., Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University, (2011)

Supervised by

Prof. Dr. Afaf Shabaan AbdulRahman

Professor of Medical Microbiology and Immunology, Faculty of Medicine - Ain Shams University

Prof. Dr. Wafaa Khalil Zaki

Professor of Medical Microbiology and Immunology, Faculty of Medicine - Ain Shams University

Dr. Shimaa Ahmed Abdel Salam

Lecturer of Medical Microbiology and Immunology, Faculty of Medicine - Ain Shams University

Dr. Ashraf Nabil Saleh

Lecturer of Anesthesia and Intensive Care Medicine, Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2021

فَسَيَرَى اللَّه عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِم الْغَيْبِ وَالشَّهَادَةِ فَيُنَبِّئُكُم بِمَا كُنتُمْ تَعْمَلُونَ

كالقالله الخطيئ

سورة التوبة - الآية (١٠٥)

"In the Name of God, the Most Gracious, the Most Merciful"

"And say, Do [as you will], for Allah will see your deeds, and [so, will] His Messenger and the believers. And you will be returned to the Knower of the unseen and the witnessed, and He will inform you of what you used to do."

At-Tawba(9-105)

Acknowledgement

I would like to express my sincerest gratitude to **Prof.**Afaf Shabaan AbdulRahman Omran, for her continuous support and may God rest her soul in peace.

I would like to express my sincerest gratitude to **Prof.**Wafaa Khalil Zaki, for her continuous support of my M.D. research,
for her, motivation, enthusiasm, patience and knowledge.

I would also like to thank **Dr. Shimaa Ahmed Abdel salam**, for her guidance as she helped me through all of the research and writing of this thesis. I could not have imagined having a better advisor for my M.D. study.

My sincere thanks also go to **Dr. Ashraf Nabil Saleh**, for his help in the thesis supervision.

Last but not the least, I would like to thank my family: my parents and my husband for supporting me spiritually throughout writing this thesis and my life in general.

LIST OF CONTENTS

	Page
LIST OF ABBREVIATIONS	II
LIST OF FIGURES.	III
LIST OF TABLES	V
INTRODUCTION	1-3
AIM OF THE STUDY	4
REVIEW OF LITERATURE	5 - 37
PATIENTS & METHODS	38 - 52
RESULTS	53 - 60
DISCUSSION	61 - 66
SUMMARY	67,68
CONCLUSION	69
CLINICAL RECOMMENDATIONS	69
REFERENCES	70 - 82
ARABIC SUMMARY	2 · 1

LIST OF ABBREVIATIONS

Abbreviation	Meaning
MRSA	Methicillin-resistant Staphylococcus aureus
HA-MRSA	Hospital associated MRSA
CA-MRSA	Community acquired MRSA
LA-MRSA	Live-stock associated MRSA
SCC	Staphylococcal Cassette Chromosome
ICU	Intensive Care Units
PVL	Panton-Valentine leukocidin.
AST	Active Surveillance Testing
CoNS	coagulase negative Staphylococcus
BMD	Broth microdilution
МН	Muller-Hinton
MIC	Minimal Inhibitory Concentration
PCR	polymerase chain reaction
mPCR	Multiplex polymerase chain reaction
CLSI	clinical laboratory standards institute
DA	Clindamycin
FOX	Cefoxitin
E	Erythromycin
P	Penicillin
SXT	Trimethoprim/Sulfamethoxazole
DO	Doxycycline
LZO	Linezolid
RA	Rifampin
CIP	Ciprofloxacin
С	Chloramphenicol
CN	Gentamycin
LEV	Levofloxacin

LIST OF FIGURES

Figure no.	Title	Page
1	The mechanisms of resistance of MRSA by PBP2a	20
2	Structure of the staphylococcal cassette chromosome mec	22
3	Regulation of mecA gene	25
4	Emergence of mecC	27
5	(A) Colonies of MRSA growing on chromIDTM MRSA agar and (B) MRSA Select agar	30
6	MH E agar	32
7	Scemec-orfX junction target by commercially available PCR systems.	35
8	The New Xpert MRSA Gen3 PCR Assay	36
9	Mannitol salt agar showing yellow colonies with yellow zones indicating Staphylococcus aureus	41
10	A plate of Muller Hinton agar shows a methicillin resistant <i>S.aureus</i> which is almost resistant to all tested antibiotics.	45
11	A plate of Muller Hinton agar shows a methicillin resistant <i>S.aureus</i> which is sensitive to almost all tested antibiotics	45
12	A plate of Muller Hinton agar shows a methicillin resistant <i>S.aureus</i> which is sensitive to oxacillin by using MIC	47
13	Gel electrophoresis of mecC gene amplification shows mecC bands at 137bp	53

Figure no.	Title	Page
14	Gel electrophoresis of mecA gene amplification shows mecA bands at 533bp	53
15	Type of specimen from which MRSA were isolated	55
16	Percentages for antimicrobial susceptibility of MRSA	57
17	MIC of MRSA isolates by E-test	57
18	Association between mecC gene and MIC result of Oxacillin	58
19	Representing percentages for antimicrobial susceptibility of mecC positive cases of MRSA	61

LIST OF TABLES

Table No.	Title	Page
1	HA-MRSA versus CA-MRSA	6
2	Distribution of reported mecC MRSA among different host species	29
3	Summary of the difference between laboratory diagnosis of mecA & mecC MRSA	37
4	In vitro susceptibility of Staphylococcus aureus to different antimicrobials	44
5	The values of the MIC of Oxacillin	47
6	Primer sequence used in the study	50
7	Requirements for each amplification reaction	50
8	Demographic data of the patients from whom the (50) MRSA included in the study were isolated	54
9	Frequencies and percentages for antimicrobial susceptibility of MRSA arranged from highest to lowest sensitivity	56
10	Frequencies and percentages for mecA and mecC genes among MRSA isolates	58
11	The frequencies, percentages and results of McNemar's test for the association between mecC and MIC	59
12	Frequencies and percentages for antimicrobial susceptibility of MRSA in mecC positive cases arranged from highest to lowest sensitivity	60

INTRODUCTION

Methicillin-resistant *Staphylococcus aureus* (MRSA) has emerged as a major cause of nosocomial infections and was regarded as Hospital associated MRSA (HA-MRSA) Since its discovery in the 1960's, in 1990's it was recognized in patients with no previous contact with healthcare facilities and was designated as community acquired MRSA (CA-MRSA), MRSA also has been recognized in a wide range of host species with evidence of animal to human transmission and was therefore regarded as Live-stock associated MRSA (LA-MRSA). MRSA poses a serious problem for infection prevention and control and antibiotic treatment globally (*Lakhundi, S., & Zhang, K.,2018*).

In a healthcare setting, such as a hospital or nursing home, MRSA can cause severe problems such as bloodstream infections, pneumonia and surgical site infections (*CDC*, 2016).

Resistance against almost all beta-lactam compounds in clinical use in MRSA is conferred by the expression of a modified Penicillin-binding protein 2a (PBP2a) that is encoded by the *mecA* gene carried on a staphylococcal cassette chromosome *mec* (*SCCmec*) (*Kumurya*, *2015*).

The report of MRSA encoding a divergent *mecA* gene in 2011 was highly significant. This homologue, designated *mecC*, poses diagnostic problems with the potential to be misdiagnosed as

methicillin-sensitive *S. aureus*, with important potential consequences for individual patients and for the surveillance of MRSA (*paterson et al.*, 2014).

The new homologue of *mecA* (*mecC*) was described sharing only 70% DNA identity with the *mecA* (*Garcia-Alvarez et al.*, 2011).

MecC MRSA have been reported from 13 European countries and have been isolated from 14 different host species, with evidence of a recent increase in Denmark Published at the same time as the UK, work in the Republic of Ireland independently described *mecC* in human MRSA strains isolated in 2010 (*Garcia-Alvarez et al.*,2011).

This *mecC* MRSA produce a distinctive antibiotic susceptibility profile compared to *mecA*. Where both Oxacillin and Cefoxitin are included, *mecA* MRSA, as might be expected, typically display resistance to both. By contrast, the majority of *mecC* MRSA show resistance to Cefoxitin, and are therefore reported as MRSA, but however show susceptibility to Oxacillin (*Cartwright*, 2013).

Also, Resistance to non β lactam antibiotics is uncommon among mecC mediated MRSA (*Paterson et al., 2014*). So, detection of the prevalence of mecC MRSA is important to give more options in the treatment of MRSA infections.

There are limited data available on the epidemiology and prevalence of (MRSA) that encode the recently described *mecA* homologue (*mecC*) in Egypt. To address this knowledge gap this study was done.

AIM OF WORK

The aim of this study was to detect the prevalence of *mecC* gene in clinical isolates of MRSA in Ain-Shams University Hospitals and to correlate minimal inhibitory concentration (MIC) of Oxacillin with the *mecC* gene expression in MRSA isolates.