

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Study of Chronic Obstructive Pulmonary Disease Patients in Embaba Chest Hospital in the Year (2019)

Thesis

Submitted for Partial Fulfillment of Master Degree In Chest Diseases

$\mathfrak{B} \mathfrak{p}$ Asma Abed Al-Kader Zaki

M.B.B.Ch, Faculty Medicine-Al-Azhar University, 2013

Under supervision of

Prof. Adel Mahmoud Khattab

Professor of Chest Diseases Faculty of Medicine – Ain Shams University

Assist. Prof. Maryam Ali Abd El Kader

Assistant Professor of Chest Diseases Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Adel Mahmoud Khattab**, Professor of Chest Diseases, Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Maryam Ali Abd El Kader, Assistant professor of Chest Diseases, Faculty of Medicine – Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

And I would like to thank all workers in Embaba Chest Hospital.

Finally, I would like to express my appreciation and gratitude to all my family.

Asma Abed Al-Kader

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	3
Review of Literature	
Chronic Obstructive Pulmonary Disease (CO)	PD)4
Clinical Phenotypes of COPD	37
Materials and Methods	44
Results	54
Discussion	75
Summary	86
Conclusion	89
Recommendations	90
References	91
Arabic Summary	

List of Abbreviations

Abb.	Full term
6MWD	.The distance walked in 6 minutes
	.Alpha1-antitrypsin
	Arterial blood gas
	. Acute respiratory distress syndrome
	.Body mass index
	.B-type natriuretic peptide
	.Burden of obstructive lung disease
	.Congestive heart failure
	.Chronic Obstructive Pulmonary Disease
COVID19	
	Computed tomography
	.Cardiovascular disease
CXR	. Chest X-ray
	.Diffusing capacity of lung for carbon monoxide
	Dry powered inhaler
ERV	Expiratory reserve volume
	Forced expiratory volume in 1 second
FRC	Functional residual capacity
FVC	Forced vital capacity
GERD	.Gastroesophageal reflux
GMP	.Guanosine monophosphate
GOLD	Global initiative for chronic obstruction lung disease
HFNT	. High flow nasal therapy
	.High resolution computed tomography
	Health-related quality of life
<u>-</u>	Inspiratory Capatity
	Inhaled corticosteroids
IHD	.Ischaemic heart disease

List of Abbreviations Cont...

Abb.	Full term
IL-6	Interleukin-6
-	Invasive mechanical ventilation
	Inspiratory reserve volume
	Jugular venous pulse
	Long-acting muscarinic- antagonist
	lactate dehydrogenase
	Lung volume reduction surgery
	Metered dose inhaler
NIV	Non invasive ventilation
OCT	Optical Coherence Tomography
PVD	Peripheral vascular disease
Pao2	Partial pressure of oxygen
PCV13	Pneumococcal conjugate vaccine
PPSV23	Pneumococcal polysaccharide vaccine
PR	Pulmonary rehabilitation
RV	Residual volume
SABA	Short-acting beta2-agonist
	Short-acting muscarinic-agonist
SARS-COV2	Severe acute respiratory syndrome
	coronavirus 2
	standard error
	Systemic Inflammatory Response Syndrome
	Soft mist inhaler
	Shortness of breath
	Total lung capacity
TV	
	Alveolar volume
VC	
	Venous thromboembolism
WHO	World health organization

List of Tables

Table No.	Title	Page No.
Table (1):	Risk Factors Associated with Exacerbations	-
Table (2):	Distribution of studied patients to demographic data	•
Table (3):	Distribution of studied patients to Occupation.	
Table (4):	Distribution of studied patients to smoking	•
Table (5):	Distribution of studied patients to patient's smoking index	O
Table (6):	Distribution of studied patients to education level.	_
Table (7):	Distribution of studied patients to residence.	
Table (8):	Distribution of studied patients to site of service provided	_
Table (9):	Distribution of studied patients to patient's comorbidity	· ·
Table (10):	Distribution of studied patients to who prescribe the treatment	_
Table (11):	Distribution of studied sample to patient's spirometry results	· ·
Table (12):	Distribution of studied patients to type of cough	_
Table (13):	Distribution of studied patients to dyspnea grading	· ·
Table (14):	Distribution of studied patients to bronchodilator treatment	•

List of Tables Cont...

Table No.	Title	Page No.
Table (15):	Distribution of studied patients actors actors to steroids treatment	•
Table (16):	Distribution of studied patients act to patient's regulation of treatment	•
Table (17):	Distribution of studied patients act to severity of COPD according to 2019.	GOLD
Table (18):	Distribution of in patients according their follow up.	-
Table (19):	Correlation between FEV1% and COPD patients in years. Smokin and dyspnea symptom.	g index

List of Figures

Fig. No.	Title	Page No.
Fig. (1): Fig. (2):	Pathway of diagnosis of COPD diagra The role of spirometry for the di assessment and follow-up of COPD	iagnosis,
Fig. (3):	Lung Volumes and Lung Capacities	
Fig. (4):	Hyperinflation in COPD	17
Fig. (5):	CXR findings in patients with COPD	17
Fig. (6):	Examples of centrilobular (A), partial (B), and paraseptal emphysema (C)	
Fig. (7):	Examples of axial and coronal CT obtained at full inflation (panels A and at relaxed exhalation (panels C a	and B)
Fig. (8):	A five-step program for intervention	27
Fig. (9):	The classes of medications commonly treat COPD	
Fig. (10):	Key points for the inhalation of drugs	
Fig. (11):	Key points for the use of anti-inflar agents	_
Fig. (12):	Key points for the management of COPD during COVID-19 pandemic	
Fig. (13):	Differentiating COVID-19 infection daily symptoms of COPD	
Fig. (14):	Pulmonary function testing (obspattern).	
Fig. (15):	Bronchodilator reversibility testing in	n COPD48
Fig. (16):	Bronchodilator reversibility testing	48
Fig. (17):	Bronchodilator reversibility testing	49
Fig. (18):	Distribution of studied patients acco	_

List of Figures Cont...

Fig. No	o. Title	Page No.
Fig. (19	Distribution of studied patients sex.	~
Fig. (20	Distribution of studied patients occupation	-
Fig. (21	Distribution of studied patients smoking	· ·
Fig. (22	2): Distribution of studied patients education level	•
Fig. (23	B): Distribution of studied patients residence	-
Fig. (24	Distribution of studied patients site of service provided	-
Fig. (25	Distribution of studied patients patient's Comorbidity	-
Fig. (26	Distribution of studied patients who prescribe the treatment	_
Fig. (27	7): Distribution of studied sample patient's spirometry results	ŭ
Fig. (28	B): Distribution of studied patients dyspnea symptoms	
Fig. (29	Distribution of studied patients bronchodilator treatment	•
Fig. (30	Distribution of studied patients steroids treatment.	-
Fig. (31	Distribution of studied patients patient's regulation of treatment	•
Fig. (32	2): Distribution of studied patients severity of COPD according to GO	•

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (33):	Distribution of studied patients ac in patients data	•
Fig. (34):	Shows that there was significant correlation between FEV1% and ag	•
Fig. (35):	Shows that there was significant correlation between FEV1% and index	smoking
Fig. (36):	Shows that there was significant correlation between FEV1% and dyspnea.	grades of

Introduction

COPD is a leading cause of morbidity and mortality worldwide that induce economic and social burden that is both substantial and increasing (Barnes and Celli, 2009).

The Burden of obstructive lung diseases (BOLD) program has also used a standardized methodology comprising questionnaires and pre- and post-bronchodilator spirometery to assess the prevalence and risk factors for COPD in people aged 40 and over around the world. Surveys have been completed in 29 countries and studies are on-going in a further nine (National Heart, Lung & Blood Institute, 2018).

COPD results from a complex interaction between genes and the environment. Cigarette smoking is the leading environmental risk factor for COPD, yet even for heavy smokers, fewer then 50% develop COPD during their lifetime (Bolton et al., 2004).

COPD should considered to any patient who has dyspnea, chronic cough or sputum production, a history of recurrent lower respiratory tract infections and/or history of exposure to risk factor of the disease (Mannino et al., 2008).

Spirometry is required to make the diagnosis in this clinical context.