

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Faculty of Science
Microbiology Dept.

Biochemical Studies on Microbial L-Glutaminase And Its Applications

ATHESIS

Submitted for the Master degree of Science (MSc) in Microbiology

By

Sara Mohammed Abdel-Haleem El-Sousy

B.Sc. Microbiology (2012), Faculty of Science, Ain Shams University

Under supervision of

Prof. Dr. **Saadia M. Hassanin Easa**Prof. of Microbiology, Faculty
of Science Ain Shams University

Prof. Dr. **Abd El Mohsen S. Ismail**

Prof.of Biochemistry, Department of Natural and Microbial Products Chemistry, National Research Centre

Dr.

Fatma Abd El kareem Alzaki Abu Zahra

Microbiological Fellow in Molecular Biology unit in the Medical Research Centre, Ain Shams University Hospitals

Cairo-2020

APPROVAL SHEET

Name: Sara Mohammed Abdel-Haleem El-Sousy

Title: Biochemical Studies on Microbial L-Glutaminase And Its Applications

<u>Supervisors</u> <u>Approval</u>

Prof. Dr. Saadia M. Hassanin Easa

Prof. of Microbiology, Faculty of Science, Ain Shams University

Prof. Dr. Abd El Mohsen S. Ismail

Prof. of Biochemistry, Department of Natural and Microbial Products Chemistry, National Research Centre

Dr. Fatma Abd El kareem Alzaki Abu Zahra

Microbiological Fellow in Molecular Biology unit in the Medical Research Centre, Ain Shams University Hospitals

Examination Committee:

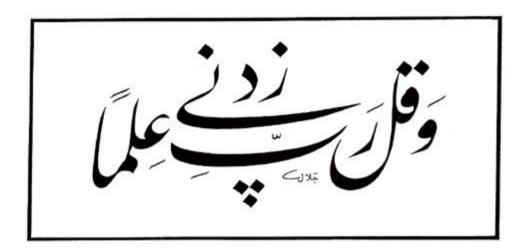
Prof. Dr. Mohammed Farouk Ghaly

Prof. of Microbiology, Botany and Microbiology Department, Faculty of Science, Zagazig University

Prof. Dr. Ahmed Mahmoud Mostafa Aboul-enein

Prof. of Biochemistry, Faculty of Agriculture, Cairo University

Prof. Dr. Saadia M. Hassanin Easa


Prof. of Microbiology, Faculty of Science, Ain Shams University

Prof. Dr. Abd El Mohsen S. Ismail

Prof. of Biochemistry, Department of Natural and Microbial Products Chemistry, National Research Centre

Date of Discussion / / Approval date / /

University Council approved / /

Dedication

I dedicate my humble efforts to the memory of My father, who always believed in my ability to be successful in the academic arena. He was gone but his belief in me made the journey possible.

I also dedicate **My mother**, whose affection, love, encouragement and prays of day and night make me able to get such success and honor.

Along with my caring brothers specially Mr. Amr El sousy, I am really grateful to all of them.

Declaration	
This thesis has not previously submitted for any other universities	
Sara Mohammed Abdel-Haleem El-Sousy	

Acknowledgement

First of all, I would like to expresses cordial thanks to the greatest Allah for all his blessings, guiding and assisting me to finish this work and without his blessings, this work would neither has been started nor completed.

I would like to express my deep, warm and sincere thanks to my advisor **Prof. Dr. Abdel -Mohsen Saber Ismail**, Professor of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt for suggesting the topic of this study, drawing the experimental designs, faithful help and careful monitoring to achieve this work. His guidance, motivation, continuous encouragement and everlasting support throughout the work and during writing all parts of this thesis will never be forgotten.

Immense and warm thanks are also due to **Prof. Dr. Saadia Mohamed Easa**, Professor of Microbiology, Microbiology

Department, Ain Shams University for her supervision, guidance, continuous compassionate help and her strong participation in offering many genius opinions, also for the unlimited support and provide good laboratory facilities during this work.

Thanks to **Dr. Fatma Abd El kareem Alzaki Abu Zahra**, Microbiological Fellow in Molecular Biology unit in the Medical Research Centre, Ain Shams University Hospitals for her valuable contribution.

Also indebted and truly thankful for **Dr. Amira Ali Hassan**, Dr. of the Natural and Microbial Products Chemistry, National Research Centre, Cairo, Egypt for her valuable guidance, continuous encouragement and unlimited help, support throughout the whole work.

I would also like to express my deep thanks to the employees of the Microbiology Department, Faculty of Science, Ain Shams University, for the effective help during this work.

Special thanks to all my colleagues in the National Research Center and in Microbiology Department, Faculty of Science for their kind help, valuable contribution and cooperation.

Finally, I would like to express my grateful, cordial thanks to my family, my beloved dead father, my dearest mother, brothers specially my brother Mr. Amr El-Sousy for their fruitful help, warm support and encouragement from the beginning of the thesis preparation to the end.

Sara Mohammed El-Sousy

2020

ABSTRACT

L-glutaminase has utmost practical importance in many fields such as medicine, pharmaceutical and some industries as an effective antioxidant, anticancer, flavor enhancer and used as an analytical reagent in the determination of glutamate and glutamine. The objective of the present article was to formulate the production medium and to pinpoint the proper growth conditions for the most potent microorganism producing highly active glutaminase enzyme. The general properties of the crude enzyme and the partially purified enzyme preparation were determined to detect the proper conditions for enzyme activity. Under the specified conditions, the capability of the two enzyme and antioxidant forms antimicrobial for activities were investigated and anticancer activity of the partially purified Lglutaminase was determined. Twelve recommended microbial strains were screened for highly active L-glutaminase enzyme production, Factors influencing the production of L-glutaminase enzyme were optimized and the important properties of the crude enzyme were pinpointed. Finally, biological activities of the crude enzyme were investigated as a preliminary index for the validity of the partially purified L-glutaminase form for medical applications. Among all tested microorganisms, Bacillus subtilis NRRL 1315 was the most potent producer for L-glutaminase enzyme. The maximum glutaminase production was obtained after

Ī

48 h of incubation on a rotatory shaker (150 rpm) from medium contained (g/L) 5 glucose, 0.1 sodium nitrate and 10 L-glutamine at 37°C and pH 7.5. The important properties of L-glutaminase enzyme were duly pinpointed as follows: optimum enzyme protein concentration and substrate concentration were investigated for the crude and the partially purified enzyme as 2 mg/mL and 40 mM, respectively, and optimum reaction pH and temperature for both enzyme forms were 7.5 and 37°C, respectively. The partially purified enzyme form was highly stable at pH 7 even after 120 min. of incubation and the enzyme retained more than 81% of the original activity also the enzyme was stable at 37°C and after 120 min of incubation it retained more than 84% of the original activity. The partially purified L-glutaminase Michaelis constant (K_m) and maximum velocity constant (V_{max}) were 2.6 mM and 37.14 U/reaction, respectively, applying the Woolf plot. Each of Mg⁺² and Mn⁺² activated the partially purified enzyme. On the other hand, EDTA and Hg⁺² at 100 mM inhibited the enzyme activity. Under the specified conditions the crude enzyme and the partially purified enzyme preparations exhibited considerable DPPH radical scavenging activity. The partially purified enzyme form had cytotoxic activity against the three human tumor cell examined namely Hep-G2 (Human Hepatocellular Carcinoma Cell Line), MCF -7 (Breast Cancer Cell Line) and HCT 116 (Colon Cell Line).

List of Abbreviations

С	Carbon
CF	Culture filtrate
°C	Degree centigrade
DMSO	(Dimethyl sulfoxide)
F	Fraction
Fig.	Figure
gm	Gram
gls A	glutaminase A
gls B	glutaminase B
h	Hour
IC ₅₀	Half Inhibitor Concentration
L	Liter
mg	Milligram
mg/culture	Milligram/ 50 milliliter culture
μg	Microgram
min.	Minute
mL	Milliliter
mM	millimolar
m	Mole
(MSG)	Mineral Salts Glutamine
	medium
MTT	(3-(4,5-dimethylthiazol-2-yl)-
	2,5-diphenyl tetrazolium
	bromide)
N	Nitrogen
rpm	Rotation per minute
Na, K Tartarate	Sodium potassium tartarate
U	Unit

Contents

	Subject	Page
	Abstract	I
	List of abbreviations	III
	List of Contents	IV
	List of Tables	X
	List of Figures	XIV
	Aim of the work	XVII
I	Introduction	1
II	Review of Literature	5
1	L- glutamine (the substrate)	5
1.1	Glutamine functions	6
1.2	Glutamine Production	7
1.3	Glutamine Consumer	7
1.4	Glutamine uses	8
1.4.1	Nutrition	8
1.4.2	Sickle cell disease	8
1.4.3	Medical food	8
1.5	Glutamine structure	9
1.6	Glutamine and Cancer	9
2	L-glutaminase (L-GLUase) enzyme	12
2.1	Mode of action	12
2.2	L-glutaminase structure	13
2.3	Isozymes	15
2.4	Tissue distribution	15
2.5	Regulation	16
2.6	Related proteins	17
2.7	Biological role of L-glutaminase in normal cells	
	and tumor cells	17
2.8	L-glutaminase sources	18
2.8.1	Animal source	18
2.8.2	Plant sources	19
2.8.3	Microbial sources	20

Contents

2.9	Production of L-glutaminase	24
2.10	Optimization of culture conditions for L-	
	glutaminase enzyme production	27
2.10.1	Effect of various carbon and nitrogen sources	
• 10 •	on enzyme production	28
2.10.2	Effect of pH	30
2.10.3	Effect of incubation temperature	31
2.11	Separation and purification of L-glutaminase	32
2.12	Properties and kinetics of L-glutaminase	34
2.12.1	Substrate Specificity	34
2.12.2	Effect of reaction temperature on the enzyme	25
	activity and thermal stability	35
2.12.3	Effect of the reaction pH on the enzyme activity	
	and pH stability	37
2.12.4	Effect of some activators and inhibitors on	
	enzyme activity	39
2.13	Applications of L-glutaminases	41
2.13.1	Food industry	41
2.13.2	Instrumental analysis	43
2.13.3	Medical applications	44
2.13.3.1	L- glutaminase in cancer treatment	44
2.13.3.2	L-glutaminase in treatment of HIV	49
2.13.3.3	L-glutaminase as antioxidant compound	49
III	MATERIALS AND METHODES	53
1	Materials	53
1.1	Microorganisms	53
1.2	Chemical substance	54
1.3	Instruments	54
1.4	Buffer solutions	55
1.5	Media	55
1.5.1	Fungal media	55
1.5.1.1	Culture maintenance medium	55