

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Clinical Effects of Simvastatin in Chronic Hepatitis C Patients Receiving Sofosbuvir/ Daclatasvir Combination

Thesis Submitted for the fulfillment of Master's degree in Pharmaceutical Sciences (Clinical Pharmacy)

Submitted By Hossam Zakarya Mohamed

Lieutenant Colonel Pharmacist in the Egyptian Armed Forces

Under Supervision of

Prof. Dr. Nagwa Ali Sabri

Professor and Head of Clinical Pharmacy Department Faculty of Pharmacy - Ain Shams University

General Dr. Hossam Zaki Hussein

Head of Hepatology Department Kobri El koba Armed Forces Hospital

Dr. Sara Mahmoud Zaki

Associate professor of Clinical Pharmacy Clinical Pharmacy Department Faculty of Pharmacy - Ain Shams University

Tist of Contents

Contents		
List of Abbreviation		
List of Table		
List	t of Figures	iv
Abs	stract	vi
Inti	roduction	1
Rev	riew of literature	
>	Hepatitis C virus overview	5
>	Risk factors for hepatitis C virus	6
>		10
>	Histological findings in acute hepatitis C virus hepatitis	14
>	Directly acting antiviral therapy	18
>	Lipid dysregulation in hepatitis C virus, and impact of statin	
	therapy upon clinical outcomes	23
>	HCV viral life cycle and host lipoproteins	24
>	Lipid changes in chronic hepatitis C infection	30
>	Potential therapeutic role of statin medications	34
>	Effect of statins on viral replication	35
>	Anti-fibrotic effects of statins	36
>	Statins in the era of DAA therapy	39
>	Evaluation of The Combination of Daclatasvir/ Sofosbuvir in	
	The Treatment of Chronic Hepatitis C	40
>	Pharmacodynamics	45
>	Pharmacokinetics and metabolism	46
>	Pharmacogenetics	49
>		49
>		55
>	Safety and tolerability	57
>		58
>	Dosing routes	59
Aim of the Work		
Patients and Methods		
Results		
Discussion		
Conclusions		
Recommendations		
Limitations		
Summary		
References		
Arabic summary		

List of abbreviations

AEs	Adverse Events
ALT	Alanine Aminotransferase
ApoB	Apolipoprotein B
ApoB100	Apolipoprotein B100
ApoE	Apolipoprotein E
AST	Aspartate Aminotransferase
AUC	Area Under the Curve
BMI	Body Mass Index
CAD	Coronary Artery Disease
CBC	Complete blood Count
СНС	Chronic Hepatitis C
Chol	Cholesterol
CK	Creatinine Kinase
CLDN1	Claudin-1
CRP	C-reactive protein
CV	Cardiovascular
DAAs	Direct-acting Antiviral Agents
DCV	Daclatasvir
DGAT	Diacylglycerol Transferase-1
DM	Diabetes Mellitus
EOT	End of Treatment
FBG	Fasting Blood Glucose
FDA	Food and Drugs Administration
FIB-4	Fibrosis score-4
GAGs	Glycosaminoglycans
Hb	Hemoglobin
HBV	Hepatitis B Virus
HCC	Hepatocellular Carcinoma
HCV	Hepatitis C virus
HDL	High-density Lipoprotein
HgbA1C	Hemoglobin A1C
HIV	Human Immunodeficiency Virus
HMG CoA	3-hydroxy-3-methylglutaryl coenzyme A
HSCs	Hepatic Stellate Cells
HTN	Hypertension
IL28B	Interleukin 28B
IQR	Inter-Quartile Range
IR	Insulin Resistance
LD	Lipid Droplets
LDL	Low-density Lipoprotein Cholesterol
LDLR	Low-density Lipoprotein Cholesteror Low-density Lipoprotein Receptor
MTP	Microsomal Triacylglycerol Transfer Protein
MW	Membranous Web
NASH	Nonalcoholic Steatohepatitis
NPC1L1	Neimann-Pick C1 Like 1
OCLN	Occludin
ORR	Objective Response Rate
Peg-IFN	PEGylated interferon

PNPLA3	Patatin-like Phospholipase Domain Containing 3
RBV	Ribavirin
ROS	Reactive Oxygen Species
RTKs	Receptor Tyrosine kinases
SD	Standard Deviation
SNP	Single Nucleotide Polymorphism
SOF	Sofosbuvir
Sof/Dac	Sofosbuvir / Daclatasvir
SRB1	Scavenger Receptor Class B Member 1
SREBPs	Sterol-regulatory Element Binding Proteins
SVR-12	Sustained Virological Response at 12 weeks after the end of treatment
T3 and T4	Tri iodothyronine and Tetra iodothyronine
TChol	Total Cholesterol
TE	Transient Elastography
TG	Triglyceride
TLC	Total Leucocytes Count
US	United States
VEL	Velpatasvir
VLDL	Very Low-density Lipoprotein

List of Tables

Table. No.	Title	Page No.
Table (1): F	Cactors influencing liver fibrosis	7
	Centers for Disease Control and Prevention t	
	recommendations for chronic HCV infection	10
Table (3): F	Pathological features of hepatitis C	15
Table (4): (Common examples of Direct Acting Antiviral drugs	19
Table (5): I	Baseline of demographic characteristics of the study grou	ups. 71
Table (6):	Number (percentage) of patients presented	with
	comorbidity in both groups.	72
Table (7): I	iver fibrosis status of patients in both groups	73
Table (8): I	Baseline laboratory data of patients in both groups	74
Table (9):	Biochemical laboratory investigations of patients i	n the
	interventional group during the study period	76
Table (10):	Biochemical laboratory investigations of patients is	in the
	control group during the study period	78
Table (11):	Biochemical laboratory tests of interventional and co	ontrol
	groups after a period of one month	79
Table (12):	Biochemical laboratory tests of interventional and co	ontrol
	groups after a period of two months.	80
Table (13):	Biochemical laboratory tests of interventional and co	ontrol
	groups after a period of three months.	82
Table (14):	Values of biochemical laboratory parameters of interver	ntional
	and control groups.	
Table (15):	Fibrosis and Child-Pugh score measurements of pa	tients
	in Interventional group.	99
Table (16):	Fibrosis and Child-Pugh score measurements of pa	tients
	in Control group.	101
Table (17):	Child-Pugh score and liver fibro-scan data of patie	nts in
	both groups	
	Patients' response to treatment in both groups	
Table (19):	Factors affecting sustained virological rate Failure	105

List of Figures

Fig. No.	∑i tle	Page No.
Figure (1): Extrahepatic r	nanifestations of HCV	9
	stography	
Figure (3): Direct-acting	g antivirals targets	19
Figure (4): Gaps in cur	rent practice in regards to he	patitis C. Only
with 43% of	patients with HCV have access	s to outpatient
care and 9%	achieve SVR	21
Figure (5): Hepatitis C v	irus life cycle	25
Figure (6): Hepatitis C	virus-mediated perturbations	in cholesterol
	ICV: Hepatitis C virus, ROS: I	• •
species, VLDI	L: Very low-density lipoprotein	26
Figure (7): Chemical str	ucture of Daclatasvir	43
	ucture of Sofosbuvir	
	sign.	
Figure (10): Levels of tot	tal cholesterol and LDL between	n interventional
o o	roups after a period of two mon	
	tal cholesterol and LDL between	
_	roups after a period of three mo	
	levels of both groups during th	• •
_	nts of both groups during the st	· -
o , ,	ocyte counts in both groups du	•
•		
_	counts in both groups during the	• -
	ransaminase enzymes (ALT)	
	g the study period	
	ransferase enzyme (AST) levels	
_	dy period	
	Kinase (CK) levels in both gro	
· -		
• , ,	esterol levels in both groups du	•
•		
•	y Lipid cholesterol (LDL) levels	~ .
_	idy period.	
	es (TG) levels in both groups d	
-		
	sity Lipid cholesterol (HDL)	
	g the study period.	
	od sugar (FBS) levels in both gro	
study period.		96

Introduction

Hepatitis C virus (HCV) is one of the most common causes of chronic liver disease and the leading indication for liver transplantation worldwide (**Simon and Butt, 2015**).

In Egypt, hepatitis C virus (HCV) infection is a major public health burden, where it bears the highest prevalence rate in the world (Gomaa et al., 2017). Moreover, patients with chronic hepatitis C (CHC) are at increased risk of hepatic steatosis, fibrosis and cardiovascular diseases including accelerated atherosclerosis (Simon and Butt, 2015).

HCV utilizes peripheral lipid metabolism pathways including hepatocyte very-low-density lipoprotein for viral assembly and requires several apolipoproteins for production of infective particles (**Pedersen et al., 2016**).

As a result, chronic hepatitis C (CHC) is associated with reduced total cholesterol, LDL and apolipoprotein B (ApoB) levels as well as an increased rate of insulin resistance (IR) and type 2 diabetes mellitus (**Gitto et al., 2018**).

On the other hand, total cholesterol, low density lipoprotein cholesterol, and high-density lipoprotein

Tist of Figures (Cont ...)

∂19. No.	Oitle	Page No.
•	emoglobin (HbA1C) levels in both	· .
Figure (25): C-reactive J	orotein (CRP) levels in both group	ps during the
Figure (26): Child-P	ugh class measurements in l group	patients of
	n assessment in both groups aft months).	•
	n assessment in both groups aft months)	•

cholesterol levels increased post therapy regardless of the regimen (Endo et al., 2017).

The data available on the effect of IFN on lipids are conflicting (Lange et al., 2010). However, Hsu, et al. (2015) reported that viral eradication due to IFN may significantly decrease cardiovascular (CV) morbidity. But data regarding effect of direct-acting antiviral (DAA) on glucose and lipid metabolism are incomplete, extrapolated from clinical trials and partially contradictory (Gitto et al., 2018).

Recently, the findings demonstrate that DAA treatment may increase levels of TG, Chol and TG/Chol ratio loaded on a single VLDL particle in patients with chronic hepatitis C (Sun et al., 2018).

It was reported that the viral clearance due to directacting antiviral led to an improvement of glucose metabolism associated with a global worsening of lipid profile and this may have a potential impact of those alteration of the CV risk so, the patients who have one or more classical CV risk factors and are treated with DAA might be monitored for an accurate stratification of CV risk (**Gitto et al., 2018**).

Statins are HMG CoA reductase inhibitors which inhibit the rate-limiting enzyme of the mevalonate pathway and have been shown to play an important role in the modulation of hepatic steatosis, cholesterol metabolism and fibrosis, and recent attention has focused upon their potential therapeutic role in CHC (Simon and Butt, 2015).

Statins appear to block HCV replication by inhibiting *de novo* cholesterol and geranylgeranylated protein synthesis, thus reducing expression of key HCV viral proteins and inhibiting pro-inflammatory signaling pathways (**Dimitroulakos et al., 2006, Zhao et al., 2010**).

Also, statins may exert antifibrotic effects (Trebicka et al., 2010, Shirin et al., 2013).

The role of statins as adjunctive therapy in HCV treatment has so far been limited to the previous standard of care, PEGylated interferon and ribavirin. Furthermore, in vitro studies have showed that statins increase the antiviral activity of different DAAs in an additive manner and delay or even prevent the development of resistance against DAAs (**Delang et al., 2009**).

According to **Kishta et al.** (2017) their search of the PubMed database and UMIN Clinical Trials Registry System, no clinical trial has been conducted for the combination of statins and DAAs.

The current study was conducted to investigate the clinical benefits of using simvastatin in CHC patients receiving Sofosbuvir/ Daclatasvir combination in terms of amelioration of lipid profile and glycemic status.

Chronic Hepatitis C

Hepatitis C virus overview

The hepatitis C virus (HCV) is the most common blood-borne infection in the United States, affecting up to 3.5 to 4 million Americans. It is also the most common cause of end-stage liver disease requiring liver transplant. HCV poses an under recognized public health challenge and remains undiagnosed in most of those infected (up to 70%) (**Foster et al., 2016**).

Furthermore, since 2007, HCV has surpassed the human immunodeficiency virus (HIV) as a cause of death in the United States, and contributed to a growing health care access and outcome disparity because it disproportionately affects those who are homeless, living below the poverty level, incarcerated, or with a history of injection drug use or alcohol abuse. The irony is that over the last 10 years, a revolution in HCV treatment with directly acting antiviral (DAA) therapies has occurred, increasing the cure rates from less than 50% to more than 90% in those who are able to traverse gaps in current practice from infection to diagnosis to access to care (Cheung et al., 2016).