

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Scientific Computing Department
Faculty of Computer and Information Sciences
Ain Shams University

Thought-Based Animated Character

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

Ву

Noran Magdy El-Kafrawy

Teaching Assistant at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University.

Under Supervision of

Prof. Dr. Sayed Fadel Bahgat

Professor at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Dr. Doaa Abd Al-Kareem Hegazy

Associate Professor at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University.

Thought-Based Animated Character

A DISSERTATION PRESENTED
BY
NORAN MAGDY EL-KAFRAWY
TO
THE SCIENTIFIC COMPUTING DEPARTMENT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTERS OF SCIENCE

IN THE SUBJECT OF

SCIENTIFIC COMPUTING

Ain Shams University Cairo, Egypt March 2021 © 2021 - Noran Magdy El-Kafrawy All rights reserved.

Thought-Based Animated Character

ABSTRACT

BCI (Brain-Computer Interface) gives people great power to manipulate things around them with the power of their thought: It gives them control on their devices, it is considered a powerful tool to assist people with disabilities: it helps them to move around and control things around them, it allows us to remotely control robots, and could even be useful to get personalized systems depending upon one's mood.

The most important part in any BCI system is interpreting the brain signals. Many different mental tasks are considered by researchers. Our work mostly focuses on motor imagery tasks, specifically imagining left hand movement, right hand, foot and tongue.

We developed three different methods to interpret brain signals:

- In the first method, we used Empirical Mode Decomposition (EMD) for feature extraction and Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel for classification. We evaluated the system using the publicly available BCI competition IV dataset and reached very promising accuracy.
- In the second method, we proposed a feature extraction method based on Empirical Mode Decomposition (EMD), where The Electroencephalography (EEG) signal is decomposed into Intrinsic Mode Functions (IMFs) by

Advisor: Prof. Sayed Fadel Bahgat, Dr. Doaa Hegazy Noran Magdy El-Kafrawy

the EMD algorithm and six statistical estimated parameters are calculated. Afterwards, Common Spatial Pattern (CSP) is applied to filter the feature vector and select the best features to overcome the curse of dimensionality problem. Then, the resultant features vector is fed to a Support Vector Machine (SVM) for classification. Promising results are obtained by testing the proposed model on the publicly available BCI competition 2008 dataset where a kappa result of 0.44 is achieved.

In the third method, we proposed a model based on estimating statistical
parameters of the EEG signals and used these as features. We then fed the
features vector to a multi-class Support Vector Machine (SVM) for classification. An average classification rate of 90.2% and a kappa result of 0.86
were achieved. The kappa result is considered a very good agreement.

We then showed the results of these methods on a 3D animated character. Each motor imagery task was resembled by a corresponding animation performed by the 3D character. We used Adobe Animator for creating the model and displayed it in matlab.

TO MY MOTHER AND FATHER,

WHO ALWAYS PICKED ME UP ON TIME

AND ENCOURAGED ME TO GO ON EVERY ADVENTURE,

ESPECIALLY THIS ONE.

Acknowledgments

I would like to gratefully acknowledge various people who have been journeyed with me in the previous years as I have worked on this thesis.

First, I would like to express my appreciation to my supervisors (Prof. Dr. Fahmy Tolba, Prof. Dr. Sayed Fadel Bahgat, Dr. Doaa Hegazy), for their continued support and guidance throughout my work. Their valuable input, helpful suggestions and positive feedback were extremely helpful and led me to the right way. I would also like to express my sincere gratitude to Prof. Dr. Howaida, who helped me a lot and supported me and did a great effort to bring this work to light.

Secondly, I would like to express my warmest appreciation to my family: my parents, my sisters, my husband and my children, for their love, support and encouragement throughout my work. Through the struggles of my work they have been a constant source of help, encouragement and joy. I am extremely grateful.

Thirdly, I would like to thank my friends that who helped me through the administrative process: Marwa and Sara

Special thanks to my friend Menna Siam, who acted as my mentor in this project. She helped me a lot and I'm really grateful.

Lastly, and most of all, I would like to thank Allah for all of His blessings and for helping me and giving me the power to complete this work.

Noran Elkafrawy

Table of Contents

Abstract							
D	Dedication						
Ac	Acknowledgments						
Abbreviations							
1	Introduction						
	1.1	Overview and Motivation	2				
	1.2	Problem Definition	6				
	1.3	Contributions	6				
		1.3.1 Interpreting Brain Waves	6				
		1.3.2 Character Animation	7				
	1.4	Publications	8				
	1.5	Thesis Organization	9				
2	Lite	rature Review	10				
	2.1	Signal Acquisition - EEG Headsets	11				
		2.1.1 Simple headsets	11				
		2.1.2 Research-grade headsets	16				
	2.2	Features Extraction	28				
	2.3	Features Selection	32				

	2.4	Classif	ication	34
	2.5	Charac	cter Animation	37
		2.5.1	Methods of Animation	41
		2.5.2	Development Equipment	45
3	Prop	osed Sy	ystem	62
	3.1	System	n Diagram	63
	3.2	EEG H	Headset	64
		3.2.1	g.GAMMAcap	65
		3.2.2	g.Nautilus RESEARCH	67
		3.2.3	Regulations	70
		3.2.4	Interface	71
	3.3	Feature	es Extraction	75
		3.3.1	Empirical Mode Decomposition (EMD)	76
		3.3.2	EMD with statistical parameters	82
		3.3.3	Statistical Parameters	87
	3.4	Classif	ication	88
		3.4.1	Support Vector Machine	88
	3.5	Charac	cter Animation	90
4	Syste	em Impl	lementation	94
	4.1	Data S	et	95
		4.1.1	Pre-Processing	101
		4.1.2	Filtering	103
		4.1.3	Signal Preparation	104
	4.2	Modes	of Operation	109
		4.2.1	Training	109
		4.2.2	Sequential Testing	115
		4.2.3	Scenario Testing	118
5	Resu	ılts and	Discussion	121
	5.1	Classif	ication Results using EMD	122

A	Class	sificatio	n Results	154	
Re	References				
	6.2	Future	Work	142	
	6.1 Summary of Contributions				
6	Conc	clusion	and Future Work	139	
		5.3.2	Results calculation	138	
		5.3.1	Multi class classification	138	
	5.3	Classifi	ication Results using statistical parameters	135	
		5.2.2	Work Flow	130	
		5.2.1	Performance Evaluation	128	
	5.2	Classifi	ication Results using EMD and statistical parameters \dots	128	
		5.1.1	Work Flow	122	

Listing of figures

1.1.1 Different types of sensors most commonly used in BCI research.	
[90]	3
2.1.1 NeuroSky headset [57]	12
2.1.2 Details of the Muse headset[52]	13
2.1.3 Emotiv headset interface[21]	14
2.1.4 Emotiv headset electrodes coverage[21] P3 and P4 are used as	
references	15
2.1.5 Open BCI headset[61]	16
2.1.6 DSI 24 headset[73]	18
2.1.7 DSI 7 headset[73]	18
2.1.8 DSI-7-Flex headset[73]	19
2.1.9 DSI VR300 headset[73]	20
2.1.10NeusenW wet EEG headset Interface[73]	20
2.1.11ANT Neuro logo[55]	21
2.1.12Starstim® headset[56]	22
2.1.13Nautilus wireless headset[24]	23
2.1.14ABM B-Alert headset[49]	24
2.1.15BioSemi headset 128 Channel measurement result[5]	25
2.1.16Cognionics headset channels/electrodes place[10]	26
2.2.1 Feature extraction methods	28
2.4.1 Classification algorithms used to design BCI systems [20]	36

2.5.1	Animation frames for a stick character	38
2.5.2	Keyframed animation	41
2.5.3	Skeletal animation[84]	42
2.5.4	Motion capture animation[89]	43
2.5.5	Pixar's animation process	45
2.5.6	Editing 3D model in Blender	47
2.5.7	Static chair model	50
2.5.8	Animated model	50
2.5.9	Patient controls a wheelchair in virtual reality [41]	53
2.5.10	Jump and run game [51]	54
2.5.11	Game to navigate through a virtual environment and collect scat-	
1	tered coins within a limited time. [71]	55
2.5.12	Characters [92]	55
2.5.13	A user plays NeuroWander [92]	55
2.5.14	BCI and scenario [92]	56
2.5.15	The game graphics in difficulty level two [15]	57
2.5.16	Screenshots from the game. In(a) and (b) BCI game with stim-	
1	ulation off [25]	58
2.5.17	Game strategy for concentration neurofeedback	59
2.5.18	Dancing Robot Game[83]	59
2.5.19	Brain Chi Game[83]	59
2.5.20	CA computational model for 3d animation overview [66]	61
3.1.1	Proposed system diagram	63
	g.GAMMAcap ² with active electrodes	66
	small cable ties fixate the electrode cables and short tagging cords	
	attach wires to the gGAMMAcap 2	67
	The g.Nautilus Research with 64 wet electrodes	68
	The g.Nautilus RESEARCH Base Station	70
	Using an anti-static wrist band set to avoid electrostatic charges .	71
	Recommended setup example in a NEEDaccess DEMO	72