

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

A STUDY ON THE EARLY SEASONAL CLOGGING OF WATER FILTERS AT EL-FOSTAT WATER PURIFICATION PLANT

Submitted By

Bardes Samir Muhammed Salem

B.Sc. of Science (Geology), Faculty of Science, Helwan University, 2002

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET A STUDY ON THE EARLY SEASONAL CLOGGING OF WATER FILTERS AT EL-FOSTAT WATER PURIFICATION PLANT

Submitted By

Bardes Samir Muhammed Salem

B.Sc. of Science (Geology), Faculty of Science, Helwan University, 2002

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Master Degree

Environmental Sciences
Department of Environmental Basic Sciences

This thesis was discussed and approved by:

The Committee Signature

1- Prof. Dr. Ahmed Sayed Ahmed Abu El-Ata

Prof. of Geophysics Faculty of Science Ain Shams University

2-Prof. Dr. Wafaa Sobhy Aly Abo El-Kheir

Prof. of Phycology Faculty of Women for Arts, Science and Education Ain Shams University

3-Prof. Dr. Aly El-Sayed Abass

Prof. and Head of Department of Engineering Geophysics Faculty of Engineering Ain Shams University

4-Prof. Dr. Ahmed Darwish Elgaml

Prof. of Phycology Faculty of Science Al-Azhar University (Boys)

2021

A STUDY ON THE EARLY SEASONAL CLOGGING OF WATER FILTERS AT EL-FOSTAT WATER PURIFICATION PLANT

Submitted By

Bardes Samir Muhammed Salem

B.Sc. of Science (Geology), Faculty of Science, Helwan University, 2002

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

Under The Supervision of:

1- Prof. Dr. Ahmed Sayed Ahmed Abu El-Ata

Prof. of Geophysics Faculty of Science Ain Shams University

2-Prof. Dr. Wafaa Sobhy Aly Abo El-Kheir

Prof. of Phycology Faculty of Women for Arts, Science and Education Ain Shams University

3-Dr. Shimaa Abd El-Kader Abd El-Wahed

Lecturer of Phycology Faculty of Women for Arts, Science and Education Ain Shams University

2021

Acknowledgment

Praise and thank to ALLAH SUBAHNA WATAALA, the most graceful and merciful for directing me the right way.

I would like to express my grateful thanks and appreciation to Prof. Wafaa Sobhy Aly Abo El- Kheir Professor of Phycology, woman's college for Art, Science, Education, Ain Shams University, for suggestion the research point, continuous support to last moment.

I would like to express my grateful thanks to prof. Ahmed Sayed Ahmed Abu El- Ata Professor of Geophysics, Faculty of Science, Ain Shams University., for his help in presenting this thesis, unlimited support, continuous encouragement and for his most valuable efforts throughout the study.

Many thanks to Dr Shymaa Abd Elkader Abd Elwahed Yousef Lecturer of Phycology,woman's college for Art, Science, Education,Ain Shams University, for her kind assistance, and for help in presenting this thesis.

Also, Iwould like to thank my family for supporting me during my studies and encouraging me. My deepest appreciation I extended to my father, my mother, my husband, my sons and all my colleagues.

Abstract

The present study was carried out at EL-Fostat water plant at Dar El-Salaam in Cairo Governorate, where these was an early seasonal clogging of the filters especially during autumn. Water samples were collected seasonally, during 2017 - 2018 from seven stages. Seasonal variations of the physico-chemical parameters (Temp, pH, EC, DO, TDS, total alkalinity, nutrients [NO₂, NH₃ and PO₄], Ntu, SiO₂, chloride and F). Biological parameters and sand analysis were done for these water samples.

The results showed correlation between some physicochemical parameters and phytoplankton standing crop during the different seasons. The phytoplankton community was represented by 44 species belonging to 26 genera and 3 algal groups: Chlorophyceae (25 species) Cyanophyceae (11 species) and Bacillariophyceae (8 species) arranged according to their number of species. But the Bacillariophyceae was a dominant group according to its quantity.

The results of the sand analysis showed an effective size of 0.916 mm, 0.983 mm and 0.95 mm. In order to solve the problem of the early clogging, two filters (activated carbon and sterilized rice straw) were used beside the ordinary sand filters. The results showed also the greatest effect of these two filters in solving this problem.

These filters helped in the extension of the of filtration period from 8 hours to 24 hours, which reduce the washing time of the sand filter once, instead of washing three times, leading to the provision of large quantities of water and reduce the doses of the used chemicals at El- Fostat water plant.

Keywords:, Activated carbon, Clarifier, Filters, In take, Back washing, Sterilized rice straw.

Contents

Page	No
Contents	I
List of Figures	II
List of Tables	IV
List of Plates	V
1. Introduction	1
Aim of the work	2
2.Review of Literature	3
3.Materials and Methods	30
4.Results	38
4.1. Physico-chemical Parameters	38
4.2. Biological parameters	50
4.3. Sand analysis	67
5. Discussion	70
6.Treatment of the clogging of the sand filters	70
7.Conclusion and Recommendation	104
8. Plates	106
9.Summary	115
10. References	123
Arabic Abstract & Arabic summary	١

List of Figures

No.	Figures name	Page
Figure 1	Over view of El-Fostat water plant.	30
Figure 2	The cycle of drinking water purification in the plant	31
Figure 3	Intake water	32
Figure 4	Pre-chlorination	32
Figure 5	Clarifier	32
Figure 6	The sand filters (Stages 4,5and 6)	32
Figure 7	Seasonal variations of Temp values (°C) in all stages at the EL-Fostat water Plant	38
Figure 8	Seasonal variations of pH values in all stages at the EL-Fostat water plant	39
Figure 9	Seasonal variations of EC values (µs/cm) in all stages at the EL-Fostat water plant	40
Figure 10	Seasonal variations of TDS values (mg/L) in all stages at the EL-Fostat water plant	41
Figure 11	Seasonal variations of DO values (mg/L) in all stages at the EL-Fostat water plant .	42
Figure 12	2 Seasonal variations of N.T.U values in all stages at EL-Fostat water plant.	
Figure 13	Seasonal variations of CaCO ₃ values (mg/L) in all stages at EL-Fostat water plant.	44
Figure 14	Seasonal variations of No ₂ values (ppm) in all stages at the EL-Fostat water plant	45
Figure 15	Seasonal variations of PO ₄ values (ppm) in all stages at EL-Fostat water plant .	46
Figure 16	Seasonal variations of Cl values (mg/L) in all stages at EL Fostat Plant.	47
Figure 17	Seasonal variations of F values (ppm) in all stages at EL-Fostat water plant.	48
Figure 18	Seasonal variations of SiO ₂ values (ppm) in all stages at the EL-Fostat water plant.	49

No.	Name	Page
Figure 19	The relation between an effective size and degree of no uniformity for stage 4.	67
Figure 20	The relation between an effective size and degree of no uniformity for stage 4.	68
Figure 21	The relation between an effective size and degree of no uniformity for stage 6.	69
Figure 22	The experiment of phenols (C_6H_5OH (nm)) in the filtered water after using the sterilized rise straw filter with sand.	87
Figure 23	Activated carbon	90
Figure 24	Activated carbon filter with sand	90
Figure 25	25 Sterilized rice straw	
Figure 26	6 Sterilized rice straw filter with sand.	
Figure 27	The filtration process through the activated carbon with sand and sterilized rice straw with sand during autumn season.	
Figure 28	The turbidity values in the experimental process through 24h for the filters (sand only, sterilized rice straw with sand and activated carbon with sand) (after filtration) and the clarifier before filtration during autumn.	
Figure 29	The number of filtereted algal taxa and the ratio of elemination during all seasons.	92
Figure 30	The ratio of eleminated and the filterated algal taxa during the autumn season.	
Figure 31	The number of periods of back washing for all the types of filters.	96

List of Tables

No.	Table name	
Table 1	Species composition and Percentage abundance of Bacillariophyceae (x10 ³ unit/L) in all stages at EL-Fostat water plant during the investigation period.	
Table 2	Seasonal variation of total number, number of species, species richness and diversity index of Bacillariophyceae in all stages at EL-Fostat water plant during the investigation period.	54
Table 3	Species composition and Percentage abundance of Chlorophyceae (unit $x10^3/L$) in all stages at EL-Fostat water plant during the investigation period.	56
Table 4	Seasonal variation of total number, number of species, species richness and diversity index of Chlorophyceae in all stages at EL-Fostat water plant during the investigation period	60
Table 5	Species composition and Percentage abundance of Cyanophyta (unit $x10^3/L$) in all stages at EL-Fostat water plant during the investigation period.	62

No.	Table name	Page
Table 6	Seasonal variation of total number, number of species, species richness and diversity of Cyanophyceae in all stages at EL-Fostat plant during the period of investigation.	
Table 7	The relation between an effective size and degree of no uniformity for stage 4.	
Table 8	The relation between an effective size and degree of no uniformity for stage 5.	
Table 9	The relation between an effective size and degree of no uniformity for stage 6.	
Table10	Species composition of Bacillariophyceae (unit $x10^3/L$) in the all types of filters and the clarifier through 24h.	

List Of Plates

NO.	Plates	Page
Plate 1	Some species of Cyanophyta	106
Plate 2	Some species of Cyanophyta	107
Plate 3	Some species of Bacillariophyta	107
Plate 4	Some species of Bacillariophyta	108
Plate 5	Some species of Chlorophyta	109
Plate 6	Some species of Chlorophyta	110
Plate 7	Some species of Chlorophyta	111
Plate 8	Some species of Chlorophyta	112
Plate 9	Some species of Chlorophyta	112
Plate 10	Some species of Chlorophyta	113
Plate 11	Some species of Chlorophyta	114

INTRODUCTION

1. Introduction

Study area

This study was carried out in the EL-Fostat water purification plant, an area of approximately 66 acres and has been run for the first time in 1988. The total actual production was 1000000 m³ / day before the expansion, after the last expansion it is 1200000 m³ / day. El-Fostat water plant provides drinking water, which serves several parts in Cairo Governorate (Figure 1).

Description of El-Fostat water plant Site

El-Fostat water plant consist of 7 stages, the first stage is the intake (raw water) where the water samples were collected (before the treatment) and it is located at Corniche El-Nile Road of Maadi (Figure 3). Second stage is the disinfection of the raw water by chlorine which disinfects micro-organisms and oxidization of water entry (pre chlorination Figure 4). Third stage is coagulation in which aluminum sulphate was added to coagulate the flocs inside clarifiers (Figure 5). Fourth stage is the filtration which goes through 3 stages (stages 4, 5 and 6) which is essential to filtrate the flocs escaped from clarifiers (Figure 6). Then finally stage is reservoir.