

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

The dosimetric properties of Borosilicate glass doped with Rare earth oxides

Thesis Submitted to Faculty of Science-Ain Shams University in partial fulfillment for Degree of MSc in Physics

$\mathcal{B}y$

Ahmed Mohamed Abdelmonem El-sayed

Demonstrator
Physics Department
Faculty of Science
Ain Shams University

Supervised By

Ass.Prof Dr. Huda Mohamed ELhusseiny

Physics Department Faculty of Science Ain Shams University

Ass.Prof Dr. Magdy Salah Abdelkarim

Physics Department Faculty of Science Ain Shams University

Dr. Huda A.Elsatar Al-Azab

Lecturer of Physics, Nuclear and Radiological Regulatory Authority

CERTIFICATION OF APPROVAL

The dosimetric properties of Borosilicate glass doped with Rare earth oxides

Ahmed Mohamed Abdelmonem El-sayed

	Signature	
Ass.Prof		
Dr. Huda Mohamed Elhusseiny		
Physics Department	• • • • • • • • • • • • • • • • • • • •	
Faculty of Science		
Ain Shams University		
Ass.Prof		
Dr. Magdy Salah Abdelkarim		
Physics Department	• • • • • • • • • • • •	
Faculty of Science		
Ain Shams University		
Dr. Huda A.Elsatar Al-Azab		
Lecturer of Physics,	••••••	
Nuclear and Radiological Regulatory Authority		

The dosimetric properties of Borosilicate glass doped with Rare earth oxides

Name: Ahmed Mohamed Abdelmonem El- sayed

Degree: M.Sc

Department: Physics

Faculty: Science

University: Ain Shams

Graduation Date: 2014 - Ain Shams University

Registration Date:12/ 11/2018

Grant Date: 2021

CONTENTS

			Contents		
1	1 Chapter One				
	1.1	Ionizing radiation	2 -		
1.2		Thermoluminescence phenomenon	2 -		
	1.3	Energy bands and localized levels	6 -		
		Defects in solids	8 -		
		Defects in glass	11 -		
1.6 El		Electron-Hole traps and recombination centers	13 -		
	1.7	The Mechanism of thermoluminescence	14 -		
	1.8	Thermoluminescence Applications	20 -		
	1.8.	.1 Radiation dosimetry	20 -		
	1.8.	.2 TL Dating of Archaeological and Geological Samples	25 -		
	1.9	The dosimetric properties of the TL phosphor	29 -		
1.9.1		.1 Dose response	29 -		
	1.9.	.2 Sensitivity	30 -		
	1.9.	.3 Fading	30 -		
1.11 Th		.4 Energy independence	31 -		
		.5 Zero dose reading	31 -		
		.6 Reproducibility	31 -		
		.7 Minimum detectable dose (MDD)	32 -		
		.8 Effective atomic number	32 -		
		literature Review	33 -		
		Thermoluminescent materials in dosimetry	36 -		
		scope of study	38 -		
2	Cha	pter Two	41 -		
	2 1	Introduction	- <i>1</i> 1 -		

	2.2	One	Trap One Recombination Model	42 -
	2.2	2.1	The First order kinetics (Randall-Wilkins model)	45 -
2.2.2 2.2.3		2.2	The Second order kinetics (Garlick and Gibson model)	48 -
		2.3	The General order kinetics (May and Partridge model)	49 -
	2.2.4		Mixed Order Model	50 -
	2.3	Mod	lel selection	51 -
2.3.1		3.1	Additive Dose Test (ADT)	52 -
	2.3	3.2	Peak Shape Test (PST)	52 -
	2.4	Dete	ermination of kinetic parameters	54 -
	2.4	.1	Initial Rise Method	54 -
	2.4	.2	Repeated initial rise Method (RIR)	56 -
	2.4	.3	Various heating rates method	57 -
	2.4	.4	Peak Shape Method	58 -
	2.5	X-ra	y analysis	63 -
	2.5.1		X-Ray production	63 -
2.5.2		5.2	X-ray spectrum	64 -
	2.5	5.3	Principle of X-Ray Diffraction (XRD)	66 -
3	Ch	apter t	hree	71 -
	3.1	Raw	materials and stoichiometric compositions of glass samples	72 -
	3.2	Glas	s preparation	73 -
	3.2	2.1	Melt-Quenching Technique	73 -
	3.2	2.2	Preparation of Proposed Glass Samples	76 -
	3.3	Sam	ple Characterization (XRD)	83 -
	3.4	Sam	ple irradiation (γ - rays source)	83 -
	3.5	TL-N	Neasurements	84 -
4	Chapter Four		89 -	
	4.1 Pow		der X-ray diffraction analysis (XRD)	90 -
	4.2	Glov	v curves	90 -
	4.2	2.1	Annealing procedure	93 -
	4.2	2.2	Heating rate	95 -

	4.2.3		Dose response	96 -	
	4.2.	.4	Thermal fading	98 -	
	4.2.	.5	Optical fading (sunlight effect)	99 -	
	4.2.6		Reproducibility	100 -	
4.2.7		.7	Minimum detectable dose (MDD)	100 -	
	4.3	Pea	k Shape parameters	101 -	
	4.4	Add	litive Dose Test	103 -	
	4.5	Rep	eated Initial Rise (RIR) Method	104 -	
	4.6	Cor	nputerized Glow curve De-Convolution (CGCD) method	106 -	
	4.7	Fad	ing analysis	107 -	
	4.8	Line	earity rang	112 -	
5	CHA	CHAPTER FIVE 113 -			
6	References 115 -				

Acknowledgments

I would like to thank all professors who supported me to the research work presented in this thesis.

I would like to dedicate this thesis to the soul of Prof.Dr. Samir Ushah Al-Khamisy. I am indebted to Prof. Samir Ushah Al-Khamisy, Professor at the department of Physics, Faculty of Science, Ain Shams University, for his encouragement, advice and guidance throughout this envelopment and in the completion of this work. Deep appreciation is owed to his for providing me interesting ideas, valuable and abundant discussions throughout this work

My deepest gratitude goes to both Dr. Huda Mohamed Elhosany and Dr. Magdy Salah, Associate Professors at from physics department at faculty of Science, Ain Shams University for thier most enlightening support and encouragement

I would like to thank Prof .Dr. Elsayed Salama, Professor at physics department, faculty of Science, Ain Shams university and Professor at basic science department, Faculty of Engineering, The British University in Egypt (BUE) for suggesting a novel and excellent point of research along with his continuous encouragement, valuable and abundant discussions throughout this work. His careful reading of the manuscript is greatly acknowledged.

I would like to express my deep gratitude to Dr. Huda A.Elsatar Al-Azab, Lecturer of Physics , Nuclear and Radiological Regulatory Authority, for her continuous and invaluable guidance. Her professional capabilities and the endless support that she has given me through my study will always be recalled and appreciated. She was always willing to answer and discuss any questions.

Finally, I would like to thank Dr. Heba Saudi, Professor of Nuclear Physics at Department of Physics, Faculty of Science (Girls' Branch), Al-Azhar University, for her effective contribution in this work.

Abstract

In this thesis, the thermoluminescence emission and the TL dosimetric characteristics of Sm-doped lithium borosilicate glasses are experimentally reported and analyzed to present a new preferable glass composite for radiation dosimetry applications.

This thesis includes five chapters, as follows:

we will explain a detailed presentation of the thermoluminescence phenomenon, and the difference between it and other luminescence behaviors. We will also discuss the most important applications that depend mainly on this phenomenon, such as TL Dating of Archaeological and Geological Samples, in addition to using this phenomenon in the fields of radiometric measurements which is defined by thermoluminescence dosimetry (TLD). We will also present information about the dosimetric properties of materials through which it is possible to determine whether any material can be used in these applications. At the end of the chapter, we will briefly mention some of the most important commercial materials used for this purpose and the efforts of researchers in developing their properties. Finally, we will discuss the goal and the main axis of this study.

we will present some of the most important theoretical models used to analyze TL- phenomenon. In addition to the methods for calculating kinetic parameters that have a great role in determining the dosimetric properties of TL materials. Finally, introducing the principle of X-Ray Diffraction (XRD) that will be relied upon in determining the non-crystal structure of the proposed glass material.

we will explain in detail how the glass samples of the proposed glass material were prepared and what tools and techniques are used for this purpose. A brief description of (X-ray diffractometer). Finally, the complete system for the measurements of TL signals will be presented in detail as well as the main parameters that control the TL signal output.

Thermoluminescence (TL) characteristics of the prepared system were investigated. The investigated thermoluminescence (TL) characteristics of the prepared system revealed that the highest TL response was obtained for this glass composite at 0.05 mole % Sm₂O₃. In this study, the 0.05 mole % Sm₂O₃ doped lithium borosilicate glass composite has been subjected to detailed dosimetric investigation in terms of its annealing condition, doseresponse, and minimum detectable dose. The reproducibility of the response, thermal and optical fading were also studied. Thermoluminescence glow curves of gamma irradiated Samarium Doped Lithium borosilicate glass was investigated. The number of overlapping peaks is determined using the Repeated Initial Rise (RIR) method, the glow curves were deconvoluted into four overlapping peaks based on the results of RIR method. trapping parameters such as activation energy E, frequency factor (s), and kinetic order(b) for each peak is determined. The results indicated that, the Lithium borosilicate glass doped with Samarium has four electron trap levels with the average activation energies of 0.753,1.013,1.128, and 1.33 eV respectively. A new procedure for studying and analyzing the glow curve fading was introduced using CGCD program. The obtained results explain some observed properties such as, thermal fading and light sensitivity for the proposed glass material.

The investigated TL characteristics of this glass composite have indicated that this prepared glass has linear dose-response over a wide dose range of 2Gy-2kGy, as well as relatively low fading rate of 33% in one

month, reasonable reproducibility of about 4 % difference in the consecutive measurements and low detection limit of about 31 mGy. These attributes render the composite under investigation promising for the utilization in radiation detection.

Key Words:

Lithium borosilicate glass - Thermoluminescence - Samarium - Glow Curve