

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Structural Engineering Department

The behavior of a Tension Leg Platform wind turbine subjected to Environmental loads

A Thesis submitted in partial fulfillment for the requirements of the degree of Master of Science in Civil Engineering

By Oliver Sadek Helmy Sadek

Bachelor of Science in Civil Engineering Structural Engineering

Supervised by

PROF. DR. MOHAMED NOUR ELDIN S. FAYED

Professor Structural Engineering Department Faculty of Engineering Ain Shams University

PROF. DR. HESHAM AHMED M. ELARABATY

Professor Structural Engineering Department Faculty of Engineering Ain Shams University

PROF. DR. SAID YOUSIF ABOUL HAGGAG

Professor Structural Engineering Department Faculty of Engineering Ain Shams University

> Cairo 2021

Statement
This thesis is submitted as a partial fulfillment of Master of Science in Civi
Engineering Engineering, Faculty of Engineering, Ain shams University.
The author corried out the work included in this thesis and no part of it has been

Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Oliver	Sadek	Helmy

Researcher data

Name Oliver Sadek Helmy Sadek

Date of birth 14 January 1993

Place of birth Cairo, Egypt

Last academic degree Bachelor of Science

Field of specialization Structural Engineering

University issued the degree Ain Shams University

Date of issued degree 2014

Current job Demonstrator

Acknowledgment

Thanks to **God**, for support and giving me the chance every day to be better and joyful, he is the main source of everything.

Many greats to my family; My genius father **Dr. Sadek Helmy**, the source of love for the engineering career. My lovely mother **Mrs. Hanan Alfonce**, the source of love and emotions throughout my entire life. My lovely sister **Ms. Olivia Sadek**, the source of joy and happiness along with life. My lovely, engaged partner **Ms. Madeleine Emil**, my future wife, the source of love and power along with present and future life.

Many thanks to my supervisors; **Prof. Dr. Mohamed Nour Eldin**, and **Prof. Dr. Hesham ElArabaty** for their experience, time, and effort with me through this thesis.

Special thanks to my special supervisor **Prof. Dr. Said Aboul Haggag** for his push every time, experience given to me, time, and effort all over the working time for the thesis. Not only being support in technical issues but also being a life coach implementing me to complete the entire work.

Many thanks to my first structural analysis instructor **Prof. Dr. Bahaa Tork**, the source of power and push to face any educational problems.

Many thanks to my leader **Eng. Marco Magdy**, for being my source of power and push all over my life.

Abstract

Wind turbines are a source of electrical energy, based on wind renewable energy. WT may be constructed on-land or offshore. In this study wind turbines are set to be offshore. Tension Leg Platform structures are mainly used for supporting petroleum platforms and wind turbines. The use of TLP structure is one of the best choices for deep water as it is a floating structure such that the structure is supported by buoyancy force exerted on it by seawater, the tendons supporting the structure are only constructed to set the structure in its certain site.

A literature review is done for successive papers, and theses to be able to have a line of research concerning the TLPWT structures and TLP structures for any other purposes. Books are being implemented in the literature review to be able to understand offshore structures' concepts, structural dynamics effect on a structure, different effects of environmental loads on offshore structures, and the main concept of TLP structures.

In this thesis, a study is done on the loads acting on the TLPWT structure including dead loads acting from the weights of all components of the structure, as hull, tendons, electrical cables, and wind turbine, and concerning environmental loads with the most significant loads, wind, current, and wave loads, and other loads acting on the structure as seismic load, tides, icing, marine growth, scour, and tsunami. These loads are studied and listed in the different possible load combinations acting on the hull, including the whole lifetime of the structure starting from the construction of parts reaching the final lifetime stable set, the loads are factored by factors of safety as the reduction done to the resistance properties of the hull, to ensure maximum safety for the structure.

The shape of the structure has been discussed, using the ship's structural shapes as a significant floating structure, and considering the shapes of the offshore floating and submerging structures, to set the best shape implemented by past researchers.

The materials of the structure are being chosen to start from the gross parts including the hull, passing by the smaller parts like tendons, footings, and electrical cables, reaching the smallest materials used for connections, including bolts and weld materials, to be able to set the best materials to be used in the modeling of the hull. The author implemented a different material to be used in the production of the tendons, FRP material, which needs further research to be set as a practical alternative.

Design considerations must be set by the designer, are given to ensure the maximum use of the constructed elements. The master point of consideration is to prevent resonance occurrence, the total displacement of the whole structure in 6 degrees of

freedom must be checked. The elements are set to design equations including thickness requirements and stiffeners. Bolted and welded connections are designed to resist the different loads acting on the hull.

A model was set by ANSYS AQWA, to set the properties of the hull's structure and the loads acting on the hull. The main loads implemented in the model are its weight, wind load, wave load, and current load. A parametric study was done concerning the pontoons and column, the pontoons' parametric study includes changing the pontoon's length and cross-section to reach the best properties of volume for deepwater reaching 900m water depth, the column's parametric study includes changing the column's cross-section. The author implements differentiating the cross-section along the elevation. The loads acting on the model are collected as the environmental loads acting in the El-Zaafarana region in eastern Egypt. Outputs are derived from the model to ensure the implemented ideas.

Finally, the TLPWT hull is recognized as the most important designed part of the structure as it is the connecting part between the WT and the mooring system, where all environmental loads act. The stability of the hull ensures the stability of the whole structure.

Table of Contents

Statemer	nt	ii
Research	ner data	iii
Acknow	ledgment	iv
Abstract		v
Table of	Contents	vii
List of fi	gures	xi
List of ta	ıbles	xiii
Chapter 1:	INTRODUCTION	1
1.1 G	eneral	2
1.2 W	ind turbines	2
1.3 O	ffshore structures	2
1.4 Te	ension Leg Platform (TLP)	2
1.5 R	esearch objective	3
1.6 L	ayout of thesis	3
Chapter 2:	LITERATURE REVIEW	4
2.1 O	ffshore structures	6
2.2 T	LP concept	6
2.2.1	Historical review of TLP	7
2.2.2	Orientation of TLP	9
2.3 St	ructural dynamics ⁹	9
2.3.1	Equation of motion ¹¹	10
2.3.2	Structural damping ¹²	11
2.3.3	Ocean's wave load equation ¹⁰	12
2.3.4	Amplification of displacement ¹⁴	13
2.3.5	Fluid contribution ¹⁰	14
2.3.6	Non-linearity ¹⁴	14
2.3.7	Resonance effect	
2.3.8	Equation of motion for 6-degrees of freedom ¹⁷	15

2.4 En	vironmental loads	17
2.5 Th	e shape of wind turbines	17
2.5.1	Historical review of WT	18
Chapter 3:	LOADS ACTING ON THE HULL	23
3.1 Per	manent Loads	24
3.1.1	Own weight	24
3.1.2	Buoyancy force	25
3.2 Liv	ve loads	28
3.3 En	vironmental loads	28
3.3.1	Wind load	29
3.3.2	Wave load	33
3.3.3	Current Load	40
3.3.4	Seismic load	43
3.3.5	Water level load	43
3.3.6	Tides ⁴⁷	44
3.3.7	Ice load	45
3.3.8	Marine growth	46
3.3.9	Scour	46
3.3.10	Tsunami	47
3.4 Lai	nd-out, transport, and installation loads	47
3.4.1	Construction of TLPWT	47
3.4.2	Different types of loadings	48
3.5 Ac	cidental and deformation loads	48
3.5.1	Accidental loads ⁵⁰	48
3.5.2	Deformation loads ⁵⁴	50
3.5.3	Corrosion	50
3.6 Lo	ad combinations ⁴⁵	52
3.7 Par	tial safety factors ⁵⁷	53
3 7 1	Load factors for ULS	54