

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Risk of Cerebral Microbleeds in Ischemic Stroke Patients Using Antiplatelet Therapies

Thesis

Submitted for Partial Fulfillment of M.D Degree in Neurology

Ву

Nabil Nasif Saber

M.Sc. Neuropsychiatry, Ain Shams University

Supervised by

Prof. Magd Fouad Zakaria

Professor of Neurology
Faculty of Medicine - Ain Shams University

Prof. Azza Abdelnasser Abdelaziz

Professor of Neurology
Faculty of Medicine - Ain Shams University

Assist, Prof. Yosra Abdelzaher Abdullah

Assistant Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Assist. Prof. Haitham Hamdy Salem

Asst. Professor of Neurology
Faculty of Medicine - Ain Shams University

Assist. Prof. Mohammed Amir Tork

Asst. Professor of Neurology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2021

I would like to express my feelings of gratitude and indebtedness to **Prof. Dr. Azza Abdelnasser Abdelaziz**, Professor of Neurology Ain Shams University, for suggesting the topic of this review, her guidance, and continuous support throughout the work.

I am profoundly grateful to Asst. Prof. Dr. Haitham Hamdy, Asst. Prof. Dr. Mohammed Amir Tork Assistant Professors of Neurology Ain Shams University for his help, guidance and support.

I wish to express my thanks to Asst. Prof. Dr. Yosra Abdelzaher Abdelaziz, Assistant Professor of Radiodiagnosis Ain Shams University for her support, guidance, supply of literature and meticulous revision throughout the work.

Thanks is also duo to **Prof. Dr. Magd Fouad Zakaria**, Professor of Neurology Ain Shams University, **Prof. Dr. Hany Aref**, Professor and Chairman of the Neurology Department Ain Shams University, for their guidance, support and supply of literature.

Lastly, I would like to express My feelings of admiration, love and respect to My family whose support was overwhelming.

🖎 Nabil Nasif Saber

Contents

Subjects	Page
• List of Abbreviations	
• List of Figures	III
• List of Tables	V
• Introduction	1
• Aim of the Work	6
Review of literature	7
Definition and pathophysiology of CMBs	7
Risk factor of CMBs	19
MRI criteria of CMBs	25
Clinical significance of CMBs	46
Subjects and Methods	61
• Results	67
• Discussion	79
• Summary	85
• Recommendations	88
• References	89
Appendix	I
Arabic Summary	

List of Abbreviations

Abb.		Full Term
AD		Alzheimer Disease
ACE		Angiotensin-Converting Enzyme 2
AGES		Age Gene/Environment Susceptibility
		Study
APs		Antiplatelets
APOE		Apolipoprotein E
ARDS		Acute Respiratory Distress Syndrome
ASPS		Austrian Stroke Prevention Study
Αβ		Beta Amyloid Peptide
BBB		Blood Brain Barrier
CAA		Cerebral Amyloid Angiopathy
CADASIL		Cerebral Autosomal Dominant
		Arteriopathy with Subcortical Infarcts
		and Leucoencephalopathy
CMBs		Cerebral microbleeds
COVID-19		Coronavirus 2019
CT		Computed Topography
FLAIR	•••••	Fluid Attenuated Inversion Recovery
GRE		Gradient Recalled Echo
ICH		Intracerebral Hemorrhage
LACI	••••••	Lacunar Infarct
LVMI	•••••	Left Ventricular Mass Index
MRI	•••••	Magnetic Resonance Imaging
OCSP		Oxford Classification Stroke Project
PACI		Partial Anterior Circulation Infarct
POCI		Posterior Circulation Infarct
SARS-COV-2		Severe Acute Respiratory Syndrome
		Coronavirus 2
SE		Spin Echo
SWI		Susceptibility weighted images
		T

🐯 List of Abbreviations 🗷

Abb.		Full Term
SVD	•••••	Small Vessel Disease
TACI	•••••	Total Anterior Circulation Infarct
TE ·	•••••	Echo Time
TIA	•••••	Transient Ischemic Attack
TOAST		Trial of Org 10172 in Acute Ischemic
		Stroke Treatment
TOF	•••••	Time of Flight
WHO		World Health Organization
WMLs	•••••	White matter lesions

List of Figures

	2101 0) 2 1911 00	
Figure No	Title	Page
Figure (1):	Multiple cortical-subcortical CMBs	
	(dark, rounded lesions) detected by axial	
	T2*-GRE	7
Figure (2):	Frequency of CMBs in Different	
	Populations and Disease States	10
Figure (3):	MRI manifestations of cerebral small	
8 ()	vessel disease	14
Figure (4):	Pathophysiolocal pathways that can give	
g (-) (rise to CMBs	15
Figure (5):	Patterns of small vessel diseases	18
Figure (6):	CMBs onT2 and T2*-GRE, on the	10
rigure (o).	bottom row: the "blooming" effect	28
Figure (7):	CMBs at 1.5 (a) and 3.0 T (b)	30
Figure (8):	CMBs on T2*GRE and SWI	32
Figure (9):	Microbleed mimics resulting from	32
rigure (9).	partial volume artefact on axial GRE	
	MRI	36
Figure (10).	(A) An axial T2*-weighted MRI scan	30
Figure (10):		
	hemisphere (left panel; arrow)	27
E' (11)	resembling a CMB	37
Figure (11):	Flow voids of leptomeningeal vessels	
	imaged in cross-section appearing as	
	punctate foci of hypointensity (arrows)	•
	in the cortical sulci on axial GRE	39
Figure (12):	Typical "popcorn-like" appearance of a	
	cavernous malformation (arrows) on	
	axial T2-weighted (A) and axial GRE	
	(B) brain MRI	41
Figure (13):	Axial proton density-weighted (left	
-	panel), T1-weighted (middle panel), and	
	T2*-weighted (right panel) MRI scans	
	depict a cavernous malformation	
	(arrows) resembling a CMB	42
	()	

🕏 List of Figures 🗷

Figure No	Title	Page
Figure (14):	Multiple haemorrhagic brain metastases	
	in a patient with small-cell lung cancer.	43
Figure (15):	A small haemorrhage within a small	
8 (/	infarct which resembles a CMB	44
Figure (16):	Cognitive impairment and other clinical	
rigure (10).	symptoms	48
Figure (17).		40
Figure (17):	Past history of cerebrovascular affection	6 0
71 (40)	in the three studied groups	68
Figure (18):	The scores of the National Institutes of	
	Health Stroke Scale of the three studied	
	groups	69
Figure (19):	Platelet count in the three studied groups	71
Figure (20):	Serum creatinine in the three studied	
	groups	71
Figure (21):	Ejection fraction in the three studied	
8 (/	groups	72
Figure (22):	Carotid artery affection by Duplex in the	
1 iguit (22).	three studied groups	74
Figure (23):	Total severity scoring according to	7 -
Figure (23).	•	74
F: (24)	Duplex findings in three studied groups.	/4
Figure (24):	Site of Cerebral microbleeds in the three	
	studied groups	76
Figure (25):	Severity of Cerebral microbleeds in the	
	three studied groups	77
Figure (26):	Frequency of cerebral microbleeds in	
	relation to type and duration of	
	antiplatelet therapy	78

🕏 List of Tables 🗷

List of Tables

	<u> </u>	
Table No	Title	Page
Table (1):	The principal features and findings in	
	CMBs studies	9
Table (2):	Common vasculopathies in CMBs	12
Table (3):	A consensus on standardized suggested	
	criteria for CMBs definition in MRI	26
Table (4):	CMBs mimics	45
Table (5):	CMBs and cognition	53
Table (6):	Baseline characteristics of the three	
	studied groups	67
Table (7):	Past history of cerebrovascular affection	
	in the three studied groups	68
Table (8):	National Institutes of Health Stroke	
	Scale scores of the three studied groups	69
Table (9):	Laboratory characteristics of the three	
	studied groups	70
Table (10):	Echocardiography findings in the three	
	studied groups	72
Table (11):	Findings of duplex of the carotid and	
	vertebral arteries in the three studied	
	groups	73
Table (12):	Magnetic resonance angiography	
	findings in the three groups	75
Table (13):	Frequency, sites, and severity of cerebral	
	microbleeds detected in the three studied	
	groups	75
Table (14):	Frequency of cerebral microbleeds in	
	relation to duration and type of	
	antiplatelet therapy	77

Abstract

Background: Interest in cerebral microbleeds (CMBs) has increased based on advances in magnetic resonance imaging (MRI) technology. Both MRI T2-weighted gradient-echo (GRE) and susceptibility-weighted imaging may be sensitive techniques for the detection of past and more recent brain hemorrhage. The prevalence of CMBs in healthy population ranges 3.7–7.7%, whereas in patients with intracerebral hemorrhage is thought to be around 60%.

Objective: To evaluate the prevalence and possible risk of microbleeds among patients with ischemic stroke using antiplatelets (Aps).

Patients and Methods: The observational hospital-based cross-sectional analytical study involved 150 consecutive patients with ischemic stroke (recent or old ischemic strokes or both), from inpatients of neurology departments of Ain Shams University Hospital and Agouza Police Hospital for a period of 15 months from April 2018 to June 2019.

Results: Cerebral microbleeds were present in 13 patients representing 26% of the no AP group, 16 patients representing 32% of the single AP group and 19 patients representing 38% of the double AP group, there was no statistically significant difference between the three groups of patients. Cerebral microbleeds were present in 60% of patients on double APs and 37.5% of patient on single AP for more than two years, compared to 23.3% and 26.9% for the two groups respectively on APs for less than two years, In the current study we found that the significant risk factor for the presence of CMBs was the duration of APs use. There was no statistically significant difference in the laboratory data (including full lipid profile, HbA1c and platelet count) between the three groups.

Conclusion: CMBs are significantly associated with long term use of antiplatelets, so careful clinical and radiological follow up of ischemic stroke patients with CMBs using antiplatelets for risk of future intracranial hemorrhage.

Keywords: Cerebral Microbleeds, Ischemic Stroke, Antiplatelet Therapies

Introduction

In the mid-1990s reports began to appear of small hemorrhagic lesions on magnetic resonance imaging (MRI) studies, Scharf et al. described black dots of signal loss on T2-weighted MRI in patients with spontaneous intracerebral hemorrhage (ICH) and termed these 'hemorrhagic lacunes' (Scharf et al., 1994).

Subsequent studies using T2*-weighted gradient-echo (T2*-GRE) MRI – a technique with greater sensitivity to the signal loss from magnetic 'susceptibility' effects of blood breakdown products – detected small round black dots which have become known as 'cerebral microbleeds' (CMBs) (Offenbacher et al., 1996).

CMBs reflect small areas of hemorrhage, and are common in both ischemic stroke and ICH (*Werring*, 2011).

Stroke was defined according to WHO criteria as a syndrome of rapidly developing clinical signs of focal (or global) disturbance of cerebral function, with symptoms lasting 24 hours or longer or leading to death, with no apparent cause other than of vascular origin. It is subdivided into ischemic stroke (caused by vascular occlusion or stenosis) and hemorrhagic stroke (caused by vascular rupture, resulting in

intra-parenchymal and/or subarachnoid hemorrhage). Ischemic stroke accounts for about 85% of cases and hemorrhagic stroke about 15% (*Thom et al.*, 2006).

Stroke is considered to be one of the important global health problems, 15 millions individual worldwide suffer a stroke annually. Of these, 5 millions die and another 5 millions are left permanently disabled, placing a burden on family and community. It ranks the second most common cause of mortality in the world, and remains the most common cause of long-term disability in adults .Although the incidence of stroke is declining in many developed countries, largely as a result of better control of high blood pressure, and reduced levels of smoking, the absolute number of strokes continues to increase because of the ageing population (*Taher et al., 2010*).

Based on the data collected by **Zhang et al.** (2012), the incidence of stroke in five European countries and the USA ranges from 114 cases per 100,000 persons per year in France for first-ever stroke to 350 cases per 100,000 persons per year in Germany for all strokes; prevalence estimates ranged from 1.5% in Italy to 3% in the UK and USA. A systematic review recorded by **Kulshreshtha et al.** (2012) recorded that population-based studies from South Asia have stroke prevalence in the range of 45–471 per 100,000. Because there

have been no epidemiological studies of stroke in Egypt, a community-based three-phase door-to-door study survey was conducted in the Assiut Governorate to estimate the prevalence and risk factors of stroke in our community giving a crude prevalence rate of 963/100,000 (*Khedr et al.*, 2013).

Transient ischemic attack (TIA) is one of the most important factor of acute ischemic stroke (AIS) (Amarenco et al., 2016). In 2009, the American Heart Association and the American Stroke Association agreed on a new definition of TIA, defined by the absence of a cerebral tissue lesion, and no more by the time from the onset (Easton, et al., 2009), a similar definition also appears in the upcoming International Classification of Diseases, Eleventh Revision (WHO, ICD-11, 2018).

Transient ischemic attack is a common condition, with an estimated 250,000 to 300,000 events occurring annually in the United States (*Mozaffarian et al.*, 2016). It precedes stroke in approximately 15% to 26% of patients (*Rothwell et C.P. Warlow*, 2005). The majority of strokes occur in the first week after transient ischemic attack, and the first 2 days after an attack are the highest-risk period, in which rates of stroke vary from 4% to 10% (*C.M. Wu, et al.*, 2007).