

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

DROUGHT AND LOW NITROGEN TOLERANCE IN EGYPTIAN MAIZE (Zea mays L.) GENOTYPES

By

RABEH YOUSIF MUBARAK MUSA

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Upper Nile Univ., Sudan, 1999 M. Sc. Agric. Sci. (Agronomy), Fac. Agric., Khartoum Univ., Sudan, 2007

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agronomy)

Department of Agronomy
Faculty of Agriculture
Cairo University
EGYPT

2021

Format Reviewer

Vice Dean of Graduate Studies

SUPERVISION SHEET

DROUGHT AND LOW NITROGEN TOLERANCE IN EGYPTIAN MAIZE (Zea mays L.) GENOTYPES

Ph.D. Thesis
In
Agricultural Sci. (Agronomy)

By

RABEH YOUSIF MUBARAK MUSA

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Upper Nile Univ., Sudan, 1999 M. Sc. Agric. Sci. (Agronomy), Fac. Agric., Khartoum Univ., Sudan, 2007

SUPERVISION COMMITTEE

Dr. AHMED MEDHAT MOHAMED AL-NAGGAR

Professor of Crop Breeding, Fac. Agric., Cairo University, Egypt

Dr. MAGDY MOHAMED SHAFIK

Professor of Crop Breeding, Fac. Agric., Cairo University, Egypt

APPROVAL SHEET

DROUGHT AND LOW NITROGEN TOLERANCE IN EGYPTIAN MAIZE (Zea mays L.) GENOTYPES

Ph.D. Thesis In Agricultural Sci. (Agronomy)

 $\mathbf{B}\mathbf{y}$

RABEH YOUSIF MUBARAK MUSA

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Upper Nile Univ., Sudan, 1999 M. Sc. Agric. Sci. (Agronomy), Fac. Agric., Khartoum Univ., Sudan, 2007

APPROVAL COMMITTEE

Dr. AFAF MOHAMED TOLBA
Professor of Crop Breeding, Fac. Agric., Ain Shams University, Egypt
Dr. MOHAMED REDA ALI SHABANA
DI. MUHAMED KEDA ALI SHADANA
Professor of Crop Breeding, Fac. Agric., Cairo University, Egypt
Dr. MAGDY MOHAMED SHAFIK Professor of Crop Breeding, Fac. Agric., Cairo University, Egypt
Dr. AHMED MEDHAT M. AL-NAGGAR
Professor of Crop Breeding, Fac. Agric., Cairo University, Egypt

Date: 1/2/2021

Name of Candidate: Rabeh Yousif Mubarak Musa Degree: Ph.D.

Title of Thesis: Drought and Low Nitrogen Tolerance in Egyptian Maize

(Zea mays) Genotypes

Supervisors: Dr. Ahmed Medhat Mohamed Al-Naggar

Dr. Magdy Mohamed Shafik

Department: Agronomy **Branch:** Crop Breeding

Approval: 1/2/2021

ABSTRACT

Exposing maize plants to drought and/or low nitrogen (N) stresses results in a huge reduction in grain yields. Current breeding programs should pay great attention to develop hybrid corn of high tolerance to these stresses. The objectives of the present study were to assess the genetic diversity of 19 maize hybrid cultivars and populations for tolerance to these stresses and stability across combinations of two irrigation and three N levels, to estimate heritability under both stresses and to identify the selection criteria for tolerance to such stresses. A twoyear field experiment was conducted using a split-split-plot design with three replications. Main plots were allotted to two irrigation regimes; sub-plots to three nitrogen fertilizer rates and sub-sub-plots to nineteen maize genotypes. Twenty-two traits were recorded. Combined analysis of variance showed that variances due to genotype, irrigation and N level and their interactions were significant ($P \le 0.05$ or 0.01) for most studied traits. Water stress, low N stress and water stress along with low N stress caused a significant reduction ($P \le 0.05$ or 0.01) in grain yield/plant (GYPP) by 28.56 %, 31.63 % and 51.42%, respectively. The highest yielding and highest nitrogen use efficiency (NUE) and the most drought and/or low N tolerant genotype was the single cross SC-101 followed by SC-30K8, SC-131 and SC-10, in descending order. Significant (P \leq 0.01) superiority of tolerant (T) over sensitive (S) genotypes in GYPP under low N (109.5 %), under drought (39.6 %), and under both severe stresses (141.9 %) was associated with significant ($P \le 0.01$) superiority expressed in all yield attributes, shorter anthesis silking interval (ASI), higher nitrogen utilization efficiency (NUTE), higher NUE. The superiority of T to S genotypes was even shown under the optimum environment for all studied traits, indicating their superiority in responsiveness to optimum environmental conditions. Estimates of heritability ranged from 55.5 % for chlorophyll conc. index under optimum environment to 98.0 % for 100-kernel weight under the same environment. Results of the GT biplot in the present study indicated that high values of 100-Kernel weight, ears/plant, kernels/plant, kernels/row, plant height, NUE, NUTE, and grain nitrogen content and short ASI could be considered reliable secondary traits for improving grain yield under stressed and non-stressed conditions. The highest genetic distance was found between SC-2055 and each of American Early Dent, Midland or Ried Type. Based on AMMI model, SC-30K8, SC-131 and SC-10 could be considered stable across the test environments. SC-101 had the highest yield, but was average in stability.

Key words: Maize collections, Drought tolerance, Low-N tolerance, Phenotypic data, PCA, GT-biplot, AMMI model, GGE-biplot, clustering, G×E interaction, adaptability, stability.

DEDICATION

I dedicate this humble work to the soul of my beloved grandmother, Maria Mario Juma Gogei

ACKNOLEDGEMENT

I would like to express my gratitude and thanks to my supervisor **Dr. Ahmed Medhat Mohamed Al-Naggar** Professor of plant breeding, Agron. Dept., Fac. Agric., Cairo Univ. for suggesting the problem, help and support provided to me, from the design of my project, valuable technical advices, guidance during the course of the fieldwork to the statistical analysis and the great part he took in writing and accomplishing of this work.

Also I am grateful to my Co-supervisor **Dr. Magdy Mohamed Shafik** Professor of plant breeding, Agron. Dept., Fac. Agric., Cairo Univ. who helped a lot in solving most of the managerial constraints and valuable guidance, and the important revision and correction he provided for finalizing of this work.

Also I would like to thank and appreciate **Dr. Abdelsamad Younis**, Researcher, National Research Center, for his valuable main role that He was played in analysis of data of this work.

Thanks also extended to my colleagues and brothers for their encouragement, support and help in the field work.

Sincere thanks are given to Maize Res. Dep., ARC, Giza, for provision with germplasm that was used in this study, and thanks also be to the all staff of Agric. Exp. and Rese. Station of the Fac. of Agric, Cairo University, Giza.

Sincere appreciation and thanks is extended to the National Gene Bank whom helped in seeds quality analysis.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Maize genotypic differences in stress tolerance	
a. Genotypic differences in drought tolerance	
b. Genotypic differences in low-N tolerance	
2. Stress effects on maize traits	
a. Drought effects on maize traits	
b. Low-N effects on maize traits	
3. Selection criteria	
a. Selection criteria for drought tolerance	
b. Selection criteria for low-N tolerance	
4. Heritability and genetic advance under stress	
a. Heritability and genetic advance under drought	
b. Heritability and selection gain under Low-N	
5. Stability and adaptability of maize genotypes	
MATERIALS AND METHODS	
RESULTS AND DISCUSSION	
1. Analysis of variance	
2. Effect of water stress	
3. Effect of reduced N level	
4. Effect of water stress combined with reduced N level	
5. Effect of genotype	
6. Phenotypic identification and variation	
a. Principal component analysis	
b. Dissimilarity Euclidean coefficients	

c. Cluster analysis based on phenotypic data	
7.Genotype × nitrogen interaction	
8.Genotype × irrigation regime interaction	
9.Genotype × nitrogen × irrigation regime	
10. Stress tolerance index	
11. Superiority of tolerant (T) to sensitive (S) genotype	S
12. Grouping genotypes	
a. Based on water efficiency and responsiveness	
b. Based on stress tolerance and grain yield under stress	
13. Trait interrelationships14. Screening criteria for drought or/and low N toleran	
16. Phenotypic and genotypic coefficients of variation. 17. Heritability and genetic advance	
18. Additive main effects and multiplicative interaction	
a. AMMI analysis of variance	
b. AMMI stability value (ASV)	
c. Genotypes grain yield vs IPCA-1 (AMMI plot)	
d. Relationships between genotypes and environments	
19. GGE Biplot analysis	
a. Mega-environments (which-won-where)	
b. Comparison plot based on the concentric circle	
CONCLUSIONS	
SUMMARY	· · · · · · · · · · · · · · · · · · ·
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Designation, origin and grain color of maize genotypes under investigation	62
2.	Soil analysis at 0-30 cm depth in the experimental fields at Giza in 2016 and 2017 growing seasons	65
3.	Meteorological data during the two growing seasons of the experiment.	66
4.	Analysis of variance and expected mean squares (EMS) across seasons	72
5.	Combined analysis of variance of split-split plot design across two years for 22 studied traits of 19 maize genotypes evaluated under two irrigation regimes combined with three N fertilizer levels	79
6.	Combined analysis of variance across years of RCBD for studied traits under each of the six environments (combinations of two water regimes x three N levels)	82
7.	Means of studied traits across genotypes and years under well-watered (WW) and water stress (WS) conditions and reduction (%) from WW to WS relative to WW	86
8.	Means of studied traits of 19 maize genotypes under low N (LN), medium N (MN) and high N (HN) combined across two years and reduction (Red%) due to MN and LN stress relative to HN	90
9.	Means of studied traits across all genotypes under each of the six environments; E1 (WW-HN), E2 (WW-MN), E3 (WW-LN), E4 (WS-HN), E5 (WS-MN) and E6 (WS-LN) and reduction (Red.%) from E1 to other five environments, across two years.	94
10.	Means of the 19 genotypes across the six environments and across two years for agronomic traits.	98
11.	Means of the 19 genotypes across the six environments and across two years for yield traits.	100
12.	Means of the 19 genotypes across the six environments and across two years for grain yield/fed and nitrogen efficiency traits	101
13.	Means of the 19 genotypes across the six environments and across two years for grain quality traits	103
14.	Principal component analysis (PCA) for morphological data	105

15.	Dissimilarity Euclidean coefficients based on phenotypic traits analysis among 19 maize genotypes (Combined across 6 environments).	109
16.	Average grain yield/plant (g) of each genotype under high N (HN), medium N (MN) and low-N (LN) stress conditions across two years and reduction (%) due to water stress	121
17.	Average nitrogen use efficiency (NUEe) (g/g) of each genotype under high-N (HN), medium N (MN) and low-N (LN) stress conditions across two years and reduction (%) due to N stress	123
18.	Average grain yield/plant of each genotype under well-watered (WW) and water stress conditions across two years and reduction (%) due to water stress.	125
19.	Mean grain yield/plant (g) of each genotype under each of the six environments across two years.	127
20.	Stress tolerance index (STI) of each genotype under sole stress (WW-MN, WW-LN and WS-HN) and combined stresses (WS-MN and WS-LN) across two years.	128
21.	Rank of the 19 genotypes from the largest STI to the lowest under sole stress (WW-MN, WW-LN and WS-HN) and combined stresses (WS-MN and WS-LN) across two years	129
22.	Superiority (Super %) of the three most tolerant (T) over the three most sensitive (S) genotypes for selected traits under the non-stressed environment E1 (well-watered-high-N; WW-HN), and stressed environments E2 (well-watered-medium-N; WW-MN), E3 (well-watered-low-N; WW-LN), E4 (water stress-high-N; WS-HN), E5 (water stress-medium-N; WS-MN) and E6 (water stress-low-N; WS-LN) combined across 2016 and 2017 seasons.	132
23.	Pearson's Correlation coefficients (r) among pairs of studied traits of 19 maize genotypes across two irrigation regimes, three N levels and two years (N=684)	143
24.	Pearson correlation coefficients between each of stress tolerance index (STI) and nitrogen use efficiency (NUE) and selected traits under the five stressed environments well-watered medium N (WW-MN), well-watered low N (WW-LN), water stress high N (WS-HN), water stress medium N (WS-MN) and water stress low N (WS-LN)	148
25.	Phenotypic (PCV) and genotypic (GCV) coefficients of variation for studied traits under the six environments across two years	155
26.	Variance components, heritability in broad sense $(h^2_b\%)$ and genetic advance from selection (GA%) for studied traits under each of the studied environments.	158

27.	Additive main effects and multiplicative interaction analysis of variance for grain yield/plant of 19 maize genotypes across 12 environments	168
28.	Environment means, scores of IPCAe-1, IPCAe-2 and AMMI stability value (ASV) for grain yield/plant of maize	172
29.	Means, scores of IPCA-1 and IPCA-2 and AMMI stability value (ASV) of 19maize genotypes for grain yield/plant	174

LIST OF FIGURES

No.	Title	Page
1.	Genotype by trait biplot illustrating the relationship between PC1 and PC2 for 19 genotypes and 13 traits of maize	107
2.	Dendrogram of 19maize genotypes based on 21 morphological characters measured across six stressed and non-stressed environments using the average method of clustering	111
3.	Relationships between GYPP of 19 maize genotypes under non-stressed (WW-HN) vs low N stressed environment E3 (WW-LN) combined across 2016 and 2017 seasons. Broken lines represent mean of (GYPP)	136
4.	Relationships between GYPP of 19 maize genotypes under non-stressed (WW-HN) vs water stressed environment E4 (WS-HN) combined across 2016 and 2017 seasons. Broken lines represent mean of (GYPP), (numbers from 1 to 19 refer to genotype numbers mentioned in Table 1)	137
5.	Relationships between GYPP of 19 maize genotypes under non-stressed (WW-HN) vs water and low N stressed environment E6 (WS-LN) combined across 2016 and 2017 seasons	138
6.	Relationships between stress tolerance index (STI) of 19 maize genotypes and GYPP under low N stressed environment E3 (WW-LN) combined across 2016 and 2017 seasons. Broken lines	120
	represent mean of STI's and GYPP	139