

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Science Geology Department

ENGINEERING GEOLOGICAL STUDIES OF THE AIN SUKHNA AREA, EASTERN DESERT, EGYPT

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Sciences in Geology

By

Ahmed Mostafa Mohamed Abdel Kader

(B.Sc. in Geology, Ain Shams University)

Geology Department Faculty of Science Ain Shams University

2021

APPROVAL SHEET

ENGINEERING GEOLOGICAL STUDIES OF THE AIN SUKHNA AREA, EASTERN DESERT, EGYPT

By Ahmed Mostafa Mohamed Abdel Kader (B.Sc. in Geology)

A Thesis

Submitted in Partial Fulfillment of the Requirements for the **Degree of Master of Sciences in Geology**

<u>Supervisors</u>	Approved
Prof. Dr. Samir Abdeltawab Mohamed Professor of Engineering Geology, Geology Department, Faculty of Science, Ain Shams University.	
Dr. Mohamed Yousef Rizk Associate Professor of Structural Geology, Geology Department, Faculty of Science, Ain Shams University.	,
Dr. Waleed Abdelmoghny Metwally Ogila Lecturer of Engineering Geology, Geology Department, Faculty of Science, Ain Shams University.	
Dr. Karim W. A	Abdelmalik
Head of Geology	y Department

APPROVAL SHEET

ENGINEERING GEOLOGICAL STUDIES OF THE AIN SUKHNA AREA, EASTERN DESERT, EGYPT

By

Ahmed Mostafa Mohamed Abdel Kader

(B.Sc. in Geology)

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Sciences in Geology

Approved
Geology
Abdelmalik

Head of Geology Department

NOTE

Name: Ahmed Mostafa Mohamed Abdel Kader

Degree: Master of Science in Geology

Department: Geology

Faculty: Science

University: Ain Shams

Graduated Year: 2009

ACKNOWLEDGMENTS

I was never without support from my supervisors at Geology Department, Faculty of Science, Ain Shams University, and my colleagues at Geotechnical and Heavy Civil Engineering Department (GHCE) of Dar Al-Handasah Consultants (Shair and Partners) during my researches that have brought forth many interesting experiences.

My special gratitude and appreciation to **Prof. Dr. Samir Abdel-Tawab Mohamed,** Professor of Engineering Geology, Geology Department, Faculty of Science, Ain Shams University, for his support, kind supervision, continuous help, incessant encouragement, significant remarks, fruitful discussion and reviewing the original manuscript of present work.

I would like to express my thanks and extreme appreciation to **Prof. Dr. Ali Mohamed Ali Abd-Allah,** Professor of Structural Geology, Geology Department, Faculty of Science, Ain Shams University, for his continuous help, guidance during different stage of this work and kind help during fieldwork. This research would not have been possible without his significant efforts.

My special thanks to **Dr. Mohamed Yousef Rizk**, Associate Professor of Structural Geology, Geology Department, Faculty of Science, Ain Shams University, for his help during the manuscript review, continuous interest, helpful remarks and significant efforts to accomplish this work. I am extremely indebted to **Dr. Waleed Abdelmoghny Ogila**, Lecturer of Engineering Geology, Geology Department, Faculty of Science, Ain Shams University, for guidance, supervising the laboratory testing program, unlimited help, useful remarks and continuous encouragement.

I would also like to thank the Ain Shams University and Academy of Scientific Research and Technology (ASRT) in Egypt for the financial support during field trips and using the Engineering Geology lab in the Geology department, through project number 1357 (Assessment and mitigations of engineering geology hazards for sustainable development of eastern side of El Galala El Bahariya, Ain Sukhna-Galala area), which significantly participated to the achievement of this research.

Last but not least, I would like to express my sincere gratitude to my family who has always been supportive of my ambition in life and they have given me the motivation and inspiration and got me back on the path when times were intractable. Many appreciations to my father and mother for all your patience and kindness throughout my study. I dedicate this thesis to my father God may rest his soul. To my wife **Dr. Noha Ali Abdel-Kader**, words fall short of the thanks that I would try to express to you. Simply, thank you for your great encouragement and kind help during my years as a master's student. Finally, special thanks are extended to anyone who helps me to complete this thesis.

ENGINEERING GEOLOGICAL STUDIES OF THE AIN SUKHNA AREA, EASTERN DESERT, EGYPT

ABSTRACT

The present work deals with the study of the engineering geology at Ain Sukhna area along the eastern side of the Northern Galala Plateau that is currently subjected to intense constructions. The study area extends from Wadi Abu Darag in the northwestern side to Wadi Qiseib (Porto Sukhna area) in the southeastern side. The studies comprise the delineation of geomorphological, lithostratigraphical, structural, and geotechnical characteristics as well as the slope stability of the existing rock cut slopes. In addition to constructing the engineering geological map.

The high-land in the study area is the Northern Galala plateau, while the lowland area occupies the coastal plain along the Gulf of Suez. The intermediate area between high- and low-lands is a slope area represented by the eastern scarp of Northern Galala Plateau with several slope angles. The exposed rock units of the study area are dominated by the Upper Paleozoic, Mesozoic and Cenozoic outcrops. The Upper Paleozoic rocks are represented by the Aheimer Formation (sandstone, clay, shale and claystone intercalated by quartzite lenses) and the lower part of Oiseib Formation (sandstone, siltstone and claystone), while the upper part of this formation is possibly of Triassic age. The Mesozoic (Cretaceous) succession can be referred to as Aptian-Albian Malha sandstone, Cenomanian Galala (clay and marl), and Turonian Wata (dolomitic limestone). The Cenozoic succession is composed of the Thebes Formation (limestone with chert) and the Minia limestone of Early Eocene age. The stratigraphic succession are intruded by Oligo-Miocene basaltic dykes. The Quaternary sediments are the most recent deposits and composed of mixtures of sand, silt and clay sediments with gravels. These rock units are affected by three main normal fault sets striking northwest, northeast, and north-south.

The geotechnical parameters of the collected samples from the Paleozoic units (Aheirmer Formation) at the foundation bed were studied in detail. They comprise the determination of some physical and mechanical properties. The initial moisture content is variable ranging between 2.08% and 2.42% for clay and claystone samples, and from 0.2% to 0.9% for the sandstone samples. The average value of specific gravity and bulk density of these samples are 2.45 and 2.14 gm/cm³, respectively. The Atterberg limits have relatively low liquid limits (average 28.28%), plastic limits (average 19.5%), and shrinkage limits (average 16.85%). Also, the free swell test results show that the samples have low to medium free swelling properties (average 33.11%). The Schmidt hammer (L-type) and point load test (PLT) were used to estimate the uniaxial compressive strength (UCS) for the collected Paleozoic samples. The higher value of UCS is recorded for quartzite samples ranging from 68 Mpa to 90 Mpa. Whereas, the lowest strength value of 12.5 Mpa is recorded for the semi-friable sandstone samples. The measured strength for massive sandstone samples range between 33.3 Mpa and 61.5 Mpa. The measured strength of claystone samples is 20.5 Mpa. In contrast, the highest value of PLT is recorded for quartzite samples which reachs up to 17.63 Mpa where the measured strength values for the massive sandstone samples range between 1.83 Mpa and 7.44 Mpa. Consequently, the massive sandstone layers represent good rock layers for foundation bed. While other rock layers including semi-friable sandstone, shale, clay and claystone bed rocks constitute a poor rock and cannot be used as foundation bedrock without treatment.

The different rock masses of the study area are categorized using Rock Mass Rating (RMR), Geological Strength Index (GSI) and Quality Index (Q-system) based on the numerical ratings. These classifications comprise the study of many parameters such as rock material origin, intact rock strength, rock quality designation (RQD), discontinuity properties, groundwater conditions, and weathering degree.

Assessment and slope stability analysis of the studied rock masses revealed that the planar, wedge, and toppling failures are dominant and controlled mainly by the discontinuities that affect these rock masses. Kinematic analysis of the studied discontinuities with the slope angles and orientations identify slope failures that occur through the steeper parts of each slope profile. The deterministic analysis and calculated factor of safety (FS) show that the most expected rock slope failures are stable in dry conditions and stability is significantly reduced in fully wet conditions (mostly become unstable) where the calculated FS is frequently less than unity in most studied slopes. Therefore, the planar, wedge and toppling failures are mostly rare in dry conditions with potential occurrence, while by increasing the urban development and human activities these failure types lead to predominant geohazard problems along the study slope profiles. Moreover, rockfall modeling is constructed along selected sections to assess the rockfall hazards related to the falling rock blocks and debris. The block trajectories, coverage distance, kinetic energy, and bounce profiles of the blocks are determined and considered as fair value to propose the appropriate method for mitigation measures. Based on the carried out slope stability analyses, the studied roads are classified into three mapped categories; low, moderate, and high risk zone of rockfall and rock failure hazards. The supporting measures are recommended according to the slope stability analyses, site inspection and encountered engineering geological conditions of different rock masses forming cut slopes. The recommended stability measures and slope protection can be used in the form of removal works, rock bolts, retaining and fence structures, shotcrete, wire mesh, and ditch structure.

Keywords: Northern Galala Plateau; Ain Sukhna-Zafarana road; Rock mass classifications; geotechnical parameters; slope stability analyses; factor of safety.

CONTENTS

Subject	Page No.
ACKNOWLEDGMENTS	i
ABSTRACT	ii
LIST OF FIGURES	vii
LIST OF TABLES	xii
LIST OF PLATES	
CHAPTER 1	1
INTRODUCTION AND GEOLOGICAL OVERVIEW	1
1.1 Location of the study area	2
1.2 Accessibility	
1.3 Objectives of the study	5
1.4 Methodology	6
1.5 Previous studies of the area	6
1.5.1 Stratigraphic studies	
1.5.2 Structure and tectonic studies	
1.5.3 Engineering geological and geotechnical studies	19
CHAPTER 2	20
GEOMORPHOLOGY	20
2.1 Introduction	20
2.2 Factors controlling the landforms	20
2.3 Geomorphology of the study area	21
2.3.1 Northern Galala Plateau	21
2.3.2 The eastern scarp of Northern Galala	
2.3.3 Slopes	
2.3.4 The Gulf of Suez coastal plain	
2.3.5 Drainage pattern	
2.3.6 Climate condition	
2.3.7 Human activities in the study area	33
CHAPTER 3	38
GEOLOGY OF THE STUDY AREA	38
3.1 Introduction	38
3.2 Lithostratigraphy	38

3.2.1 Upper Paleozoic succession	40
3.2.1.1 Aheimer Formation (Upper Pennsylvanian - Lower Permian) 40
3.2.1.2 Qiseib Formation (Permo - Triassic)	46
3.2.2 Mesozoic succession	50
3.2.2.1 Malha Formation (Aptian-Albian)	50
3.2.2.2 Galala Formation (Cenomanian)	
3.2.2.3 Wata Formation (Turonian)	57
3.2.3 Cenozoic succession	59
3.2.4 Olig-Miocene	60
3.2.5 Quaternary	61
3.3 Potential geologic hazards	61
3.4 Structural setting	64
3.4.1 Bedding	64
3.4.2 Joints	66
3.4.3 Faults	68
3.4.3.1 NW fault set	71
3.4.3.2 NE fault set	72
3.4.3.3 N-S fault set	73
3.4.3.4 Wadi Abu Darag fault block	73
3.5 Regional tectonic evolution of the Gulf of Suez rift	77
CHAPTER 4	78
GEOTECHNICAL PARAMETERS OF PALEOZOIC STRATA	78
4.1 Introduction	78
4.2 Sampling	
4.3 Engineering properties of studied rocks	
4.3.1 Physical properties	
4.3.1.1 Density and specific gravity	80
4.3.1.2 Moisture content	
4.3.1.3 Atterberg limits	84
4.3.1.4 Consistency indices	91
4.4 Identification of swelling characteristics	95
4.4.1 Free swelling test	
4.4.2 Relation between index properties and swelling potential	
4.5 Mechanical properties of studied rocks	
4.5.1 Uniaxial compressive strength	
4.5.2 Point load	

CHAPTER 5	105
OCK MASS PROPERTIES AND CLASSIFICATIONS	105
5.1 Introduction	105
5.2 Rock mass properties and quality	106
5.2.1 Rock material origin	106
5.2.2 Intact rock strength	108
5.2.3 Rock quality designation index (RQD)	110
5.2.4 Discontinuity properties	
5.2.4.1 Discontinuity sets	115
5.2.4.2 Discontinuity orientations	
5.2.4.3 Discontinuity spacing	116
5.2.4.4 Discontinuity persistence (continuity)	118
5.2.4.5 Discontinuity infilling and aperture	120
5.2.4.6 Discontinuity roughness	121
5.2.4.7 Discontinuity friction angle	124
5.2.4.8 Discontinuity water seepage	125
5.2.5 Groundwater conditions	127
5.2.6 Degree of weathering	128
5.3 Rock mass classifications	130
5.3.1 Rock mass rating (RMR) system	131
5.3.2 Rock mass quality (Q-system)	135
5.3.3 Stand-up time classification	144
5.3.4 Geological strength Index (GSI) system	148
5.4 Engineering geological mapping.	152
HAPTER 6	
OCK MASS EXCAVATION AND SLOPE STABILITY	154
6.1 Introduction	154
6.2 Rock slope excavation methods	156
6.2.1.1 Ripping	157
6.2.1.2 Drilling and blasting	157
6.2.2 Concept design of rock cut slope	160
6.2.2.1 Cut slope ratio (slope angles)	163
6.2.2.2 Berms (Benches)	165
6.2.2.3 Cut slope height	166
6.2.2.4 Drainage management	168
6.3 Slope stability analyses and potential of rockfalls	169
6.3.1 Kinematic analysis of structural data	170
6.3.1.1 Rock failures mechanisms	171

6.3.2 Deterministic analysis	184
6.3.3 Rockfall analysis (rockfall simulation)	188
6.3.4 Potential rockfall hazard along the eastern Galala scarp	208
6.3.5 Slope instability and rockfall hazard zonation map	211
6.4 Rock cut slope stabilization	213
6.4.1 Supporting measures	213
6.4.1.1 Removal works	214
6.4.1.2 Retaining structures	214
6.4.1.3 Rock bolting and anchoring	216
6.4.2 Slope protection elements	223
6.4.2.1 Shotcrete and wire mesh	223
CHAPTER 7	224
SUMMARY AND RECOMMENDATIONS	224
7.1 Summary and conclusions	224
7.2 Recommendations	233
7.2.1 Recommendations for rock foundation	233
7.2.2 Recommendations for cut slopes	234
REFERENCES	237
ARABIC SUMMERY	

LIST OF FIGURES

Fig. No. Page No.
1.1: Location map of the study area (red rectangle indicates the study area)2. 1: Geomorphological map of the study area
2. 2: The location of topographic profiles through the study area superimposed
on the topographic map
2. 3: Topographic profiles of the study area (scale V=H)
2. 4: Drainage pattern of the study area
2. 5: Rain fall precipitations data in Suez region as measured in Suez station
to the north of the study area.
2. 6: Maximum and minimum average temperatures near to the study area 35
2. 7: Maximum and minimum daily temperatures around the study area 36
2. 8: Humidity near to the study area. 36
2. 9: Field panoramic photograph (looking to northwest) showing the ongoing
rock excavation at the hill crest, along the coastal strip. The excavated
materials (light color) are pushed down the slope by mechanical equipments
37
2. 10: Field panoramic photograph showing the side slope excavation along
the newly contracted road that connects Ain Sukhna and Zafarana areas 37
2. 11: Field panoramic photograph showing the rock cut slope excavation
along the newly contracted road that connects the Galala resort on the coasta
area and new Galala city on the plateau surface
3. 1: Composite stratigraphic section of the study area at Northern Galala Pletson (Compiled from Abdellah and Adindoni 1962; Abdellah at al. 1963)
Plateau (Compiled from Abdallah and Adindani, 1963; Abdallah et al., 1963 Kabaila, 2000; Khalifa and Kandil, 2004; Sabar, 2012 and Rosworth et al.
Keheila, 2000; Khalifa and Kandil, 2004; Saber, 2012 and Bosworth et al. 2015).
3. 2: Field panoramic photograph showing the alternating beds of sandstone
and shale of the lower member of Aheimer Formation
3. 3: Field photograph of the black shale layer of the lower member and
sandstone with siltstone interbeds of the middle member of Aheime
Formation
3. 4: Field photograph of the white, friable sandstone, ferruginous sandstone
layer and yellowish-brown sandstone with siltstone interbed of the uppe
member of Aheimer Formation
3. 5: Field photograph showing the well-developed cross-bedded sandstone o
Aheimer Formation.
3. 6: Field photograph of brown to radish brown sandstone intercalated with
varicoloured alternating beds of claystone, siltstone, and shale of Qiseil
Formation 49