

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Structural Engineering

Development of a New Finite Element Solver Using a Guided Relaxation Technique

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Civil Engineering

(Structural Engineering)

Baher Atef Zakher Haleem Zayed

B.Sc. in Civil Engineering (Structural Engineering)

Faculty of Engineering, Ain Shams University, June 2016

Supervised by

Prof. Dr.

Prof. Dr.

Hisham Ahmed El-Arabaty

Bahaa Sharaf Tork

Professor Structural Engineering Department Ain Shams University Professor Structural Engineering Department Ain Shams University

Dr.

Ihab El Aghoury

Associate Professor Structural Engineering Department Ain Shams University

© Cairo – (2021)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Structural Engineering

Development of a New Finite Element Solver Using a Guided Relaxation Technique

A Thesis Presented by **Baher Atef Zakher Haleem Zayed**

B.Sc. in Civil Engineering (Structural Engineering)
Faculty of Engineering, Ain Shams University, June 2016

Examiners' Committee

Name and Affiliation	Signature	
Prof. Dr. Hala Mohamed Gamal Eldin Elkady Professor of Civil Engineering National Research Center, Cairo, Egypt		
Prof. Dr. Mohamed Nour Eldin S. Fayed Professor of Structural Engineering Ain Shams University, Cairo, Egypt		
Prof. Dr. Hisham Ahmed El-Arabaty Professor of Structural Engineering Ain Shams University, Cairo, Egypt		
Prof. Dr. Bahaa Sharaf Tork Professor of Structural Engineering Ain Shams University, Cairo, Egypt		

Date: / / 2021

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

Name: Baher Atef Zakher Haleem Zayed

Thesis: Development of a New Finite Element Solver Using a

Guided Relaxation Technique

Degree: Master of Science in Civil Engineering

Supervisors' Committee

Name and Affiliation	<u>Signature</u>				
Prof. Dr. Hisham Ahmed El- Professor Structural Engineering Department Ain Shams University	-Arabaty				
Prof. Dr. Bahaa Sharaf Tork Professor Structural Engineering Department Ain Shams University					
Dr. Ihab El Aghoury Associate Professor Structural Engineering Department Ain Shams University					
Date: / / 2021					
Postgraduate Studies:					
Authorization stamp:	The thesis is authorized at / / 2021				
College Board Approval	University Board Approval				
/ / 2021	/ / 2021				
© Cairo – (2021)					

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Civil Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name
Baher Atef Zakher Haleem Zayed
Signature

Date: 8 / 2 / 2021

Researcher Data

Name : Baher Atef Zakher Haleem Zayed

Date of birth : 18/06/1992

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of science

Field of specialization : Civil Engineering – Structural dept.

University issued the degree : Ain Shams University (ASU)

Date of issued degree : June 2016

Current job : T.A at Faculty of Engineering - ASU

Thesis Summary

Among the numerical methods for solving engineering problems, is the finite element method (FEM) whose applications in various fields of science and engineering are continually growing resulting in a similar increase in the size and sophistication of the models. Consequently, there is a mounting need for faster and more efficient finite element analysis (FEA) algorithms since reaching the solution to the system of linear equations in FEM is usually the most exhausting and computationally demanding part through the process. There are two main classes of algorithms which are Direct and Iterative solvers. The performance of any technique changes depending on the scale of the system to be analyzed and the properties of the coefficient matrix, which in turn affect the selection between the solvers depending on some standards, i.e., the solver's perfomance, such as the results' accuracy, the required storage, amount of computation and performance speed. Unfortunately, these requirements are usually contradictory, hence it is still essential to find out new effective solutions as there is no single technique that outperforms the others in all cases. Generally, the direct methods tend to demand a remarkably large memory space and a great amount of calculation for huge problems, so they take long run time. Thus, an iterative solver, that requires relatively less memory space, is more desirable in these cases. Moreover, iterative solvers are generally simpler to program. After considering a number of iterative analysis techniques, the classical relaxation method was selected as a starting point for this research. The main objective of this research is to develop a new finite element solver using a Guided Relaxation (GR) technique, which is an iterative method based on standard force-relaxation methods in addition to being guided by certain innovative Relaxation Modes that were carefully chosen to boost the rate of convergence. Furthermore, some procedure modifications are developed to improve the performance of GR. The idea and algorithm of GR as well as the development sequence of Relaxation Modes and procedure modifications are elaborated in both 2D and 3D analyses along with illustrating the impact of each Relaxation Mode and procedure modification on GR's performance. After software implementation of GR's algorithm in addition to some other classical and modern iterative techniques, the rate of convergence of GR is compared to that of those techniques for assessment in different 2D cases. Then, a large parametric study is conducted

and provided to assess GR by comparing it with Conjugate Gradient (CG) method in 2D and 3D analyses depending on various parameters and conditions. Finally, conclusions and recommendations concerning the suitability of usage of both GR and CG techniques are provided.

Key Words: finite element method, direct and indirect solvers, classical and modern iterative methods, classical relaxation, Conjugate Gradient.

Acknowledgment

I would like to express my sincere gratitude and warmest appreciation to my brilliant supervisors, **Prof. Dr. Hisham Ahmed El-Arabty**, **Prof. Dr. Bahaa Sharaf Tork**, and **Dr. Ihab El Aghoury**, for their wise guidance and invaluable and inspiring suggestions, besides their encouraging and supportive supervision throughout this research. I am deeply grateful for everything I learned from them.

Additionally, I am extremely thankful to my father, my mother, and my brother for their lifelong continuous support and precious care along with believing in me and my aspirations.

Table of contents

Stateme	nt	1V
Research	her Data	vi
Thesis S	ummary	vii
Acknow	rled gment	ix
Table of	contents	X
List of f	igures	xvii
List of t	ables	xviii
Chapter	1: Introduction	1
1.1	Equation solvers for finite element analysis (FEA) software	1
1.1	.1 Direct methods	2
1.1	.2 Iterative methods	3
1.1	.3 Recapitulation and review	6
1.2	Thesis objectives	6
1.3	Methodology	7
1.4	Thesis outline	8
Chapter	2: Literature review	11
2.1	Classical iterative methods	11
2.1	.1 Jacobi and Gauss-Seidel (GS) methods	11
2.1	.2 Successive Overrelaxation (SOR) method	14
2.1	.3 Accelerated overrelaxation (AOR) method	17
2.1	.4 Kani's Method and Moment Distribution method	18
2.1	3	
	ictures	
2.2	Modern iterative (Krylov subspace) methods	
2.2	6	
2.2		
2.2	.3 Conjugate Gradient (CG) method	22

2	2.2.3.1	Introduction.	22
2	2.2.3.2	Historical background and literature review	24
2	2.2.3.3	Ill-conditioning and round-off error	26
2	2.2.3.4	Preconditioning	27
Chapter	3: Guide	d Relaxation solver in 2D analysis	28
3.1	Introduc	etion	28
3.2	The class	sical relaxation method	29
3.3 Distr		al background and relaxation concept in Moment ethod	29
3.3	3.1 An	alysis by Moment Distribution method	29
	3.2 Anaethod 31	alysis by Kani's Method compared to Moment Distribution	ion
3.4	The nee	d for developing a new relaxation solver	32
3.5	Develop	ment of the Guided Relaxation technique	32
3.6	Beam th	neories	34
3.6	5.1 Eul	er-Bernoulli Beam Element Matrices	34
3.6	5.2 Tin	noshenko Beam Element Matrices	35
3.7	2D Sign	convention	37
3.8	2D Rota	ation matrix	38
3.9	Relaxati	on Modes	40
3.9	0.1 Rel	axation Mode 1	40
3	3.9.1.1	Equations defining Relaxation Mode 1	41
	3.9.1.2 chematic	Illustration of Relaxation Mode 1 with matrices and drawings	43
3.9	0.2 Rel	axation Mode 2	47
3	3.9.2.1	Equations defining Relaxation Mode 2	48
	3.9.2.2 chematic	Illustration of Relaxation Mode 2 with matrices and drawings	49
3	3.9.2.3	Relaxation Mode 2 in Multi-story 2D structures	50
2 () 2 D ol	avation Mode 2	5/1

	3.9.3.1 Eq		1 Equations defining Relaxation Mode 3	56
	_	.9.3 chem	2 Illustration of Relaxation Mode 3 with matrices and natic drawings	56
3	3.10	P	rocedure modifications	57
	3.1	0.1	Residual loads continuous updating	58
	3.1	0.2	Inclusion of the overrelaxation concept	61
3.10.3		0.3	Successive repetition of the same relaxation mode	66
	3.1	0.4	Insertion of Vertical Displacement Submode	67
Cha	apter	4: G	uided Relaxation solver in 3D analysis	72
4	1.1	Inti	oduction	72
4	1.2	Bea	ım theories	72
	4.2	.1	Euler-Bernoulli Beam Element Matrices	73
	4.2	.2	Timoshenko Beam Element Matrices	74
4	1.3	3D	Sign convention	75
4	1.4	3D	Rotation matrix	76
4	1.5	Rel	axation Modes	80
	4.5	.1	Relaxation Mode 1	80
	4.5	.2	Relaxation Mode 2	80
	4.5	.3	Relaxation Mode 3	90
4	1.6	Pro	cedure modifications	95
	4.6	.1	Residual loads continuous updating	95
	4.6	.2	Inclusion of the overrelaxation concept	96
	4.6	.3	Successive repetition of the same relaxation mode	97
	4.6	.4	Insertion of Vertical Displacement Submode	98
Cha	apter	5: A	lgorithms implementation in program and some 2D results .	.103
5	5.1	Inti	oduction	. 103
5	5.2	Cor	nvergence criterion	. 105
5	5.3	Flo	wchart of the Guided Relaxation program	. 105
5	5.4	No	de numbering system	. 109