

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

IMPROVEMENT OF SOLID WASTES FROM PROCESSED RADIOACTIVE MATERIALS TO STUDY THEIR EFFECTS ON AGRICULTURE AND ENVIRONMENT IN SOUTH WESTERN SINAI

By

ASHRAF MOHAMED REFAEI IBRAHIM

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 1996 M.Sc. Agric. Sc. (Soil Science), Ain Shams, University, 2011)

A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in
Agricultural Sciences
(Soil)

Department of Soil and Water Faculty of Agriculture Ain Shams University

Approval Sheet

IMPROVEMENT OF SOLID WASTES FROM PROCESSED RADIOACTIVE MATERIALS TO STUDY THEIR EFFECTS ON AGRICULTURE AND ENVIRONMENT IN SOUTH WESTERN SINAI

By

ASHRAF MOHAMED REFAEI IBRAHIM

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 1996 M.Sc. Agric. Sc. (Soil Science), Ain Shams, University, 2011)

This thesis for Ph D degree has been approved by

This thesis for This, degree has been approved by.
Dr. Ahmed Abd El-Kader Taha Prof. Emeritus of Soil Science, Faculty of Agriculture, Mansour University.
Dr. Abdellatif Saleh El-Sebaay Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Sham University.
Dr. Eid Morsy Khaled Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Sham University.
Dr. Mohamed E. El-Nennah Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Sham University.

Date of Examination: 1/4/2021

IMPROVEMENT OF SOLID WASTES FROM PROCESSED RADIOACTIVE MATERIALS TO STUDY THEIR EFFECTS ON AGRICULTURE AND ENVIRONMENT IN SOUTH WESTERN SINAI

By

ASHRAF MOHAMED REFAEI IBRAHIM

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 1996M.Sc. Agric. Sc. (Soil Science), Ain Shams, University, 2011)

Under the supervision of:

Dr. Mohamed E. El-Nennah

Prof. Emeritus of Soil Science, Department of Soil and Water, Faculty. of Agriculture, Ain Shams University (Supervisor)

Dr. Eid Morsy Khaled

Prof. Emeritus of Soil Science, Department of Soil and Water, Faculty. of Agriculture, Ain Shams University

Dr. Nasr Abd El-Azez Abd El-Fattah

Researcher Prof. of Physical Inorganic Chemistry, Production Sector, Nuclear Materials Authority

ABSTRACT

Ashraf Mohamed Refaei Ibrahim: Improvement of Solid Wastes from Processed Radioactive Materials to Study their Effects on Agriculture and Environment in South Western Sinai. Unpublished Ph.D. Thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2021.

The acid processing of radioactive sedimentary rock material led to the production of huge amounts of milling solid radioactive wastes. These wastes represent environmental pollution of some heavy metals and radioactive elements in the areas surrounding the mining and milling area in Wadi Allouga and Wadi Nasab and their surroundings located the in south western Sinai, Egypt. The aim of this study was to decrease the grade of environmental pollution and permit the safe storage of milling solid wastes or to use them in agriculture in the study area. Moreover, studying heavy and radioactive elements effects on soil, herb weeds and water wells contamination in study area and surroundings. Additional, studying the ability of sunflower (Helianthus Annuus) to remediate some heavy and radioactive elements to decrease their effects on germination and growth characteristics of plant. The geochemical characteristic of the original ore material was chemically consisted of around 50% SiO₂, 10.6% Al₂O₃, 10.2 Fe₂O₃, 13% (CaO + MgO) and around 10% loss on ignition. This figure indicated high carbonate and total iron contents. The mineralogic constituents of milling solid wastes were consisted of Quartz, Kaolinite, Jarosite and Gypsum. The milling solid wastes contained 60.2% SiO₂, 6.8% Al₂O₃, 9.4% Fe₂O₃, 4.7% (CaO + MgO) and 14.8% loss on ignition. The picture of some trace elements was as follows; Cu was 2900 mg Kg⁻¹ in original ore material and 359 mg Kg⁻¹ in milling solid wastes. In the same order, Zn was 1865 and 92 mg Kg⁻¹, Th was 14 and 26 mg Kg⁻¹, U was 346 and 184 mg Kg⁻¹, The value of the main specific activity of radionuclides as ²³⁸U, ²³²Th, ²²⁶Ra and ⁴⁰K in original ore material, milling solid wastes and mixed soil samples were 4527.63, 2385.72 and 6.23 Bq kg-1; 58.39, 56.44 and 5.93 Bq kg⁻¹; 5608.31, 5864.33 and 9.35 Bq kg-1 and 377.32. 385.51 and 1.10 Bq kg⁻¹, respectively. The optimum conditions of leaching efficiency of heavy metals and radioactive elements from milling solid wastes by agitation leaching were application of 40 g L⁻¹ from sulfuric acid, with particles size; < 2.8 mm, solid/ liquid ratio 1/2 at room temperature 25°C and agitation time 4 hrs. The leaching efficiency of U, Cu and Zn elements were 88.0, 58.1 and 37.3%, respectively. Application of 40 g L⁻¹ from sulfuric acid, with flow rate of 1.2 ml min⁻¹ particles size < 5.0 mm by column method achieved leaching efficiency of U, Cu and Zn elements as 69.91, 60.42 and 27.5%. While leaching efficiency of U, Cu and Zn elements were 52.8, 79.3 and 36.7% by application of 10 g L⁻¹ from citric by concentration, respectively, column leaching acid Microorganisms were isolated from three representative samples of milling solid wastes after the previous chemical treatment with column method using tap water, sulfuric acid and citric acid and hence were tested under microscope to identify the types of fungi. All types of fungi were coming from one strain which is Aspergillus strain. The picture of original ore material and milling solid wastes was reflected on the soil after the flush flood. The degree of contamination was pronounced in the upstream of soil in Wadi Allouga and Wadi Nasab and decreased in the direction of downstream. Similarly, the degree of contamination was pronounced in the upstream of water wells and decreased in the direction of downstream. Copper ranged from 3637 to 1464 mg L⁻¹, Zn from 442 to 130 mg L⁻¹, Mn from 4702 to 422, Pb from 287 to 148 mg L⁻¹, Ni ranged from 257 to 130, Co from 178 to 41, U from 9 to 2 mg L⁻¹ and Th from 13 to 4 mg L⁻¹ in the downstream during the low torrential course in the valley. The contamination effect was also clear in the two types of herb weeds (Zygophyllum siplex and Haloxylon salicornicum) in Wadi Allouga and Wadi Nasab. Uranium in the roots of *Zygophyllum siplex* plant ranged from 4 to 6 mg Kg⁻¹, while in roots of *Haloxylon salicornicum* plant was not detected. Also, it was not detected in the vegetative part of the two herb plants and Th was not detected in the roots and vegetative part of the two herb plants. On the other hand, the levels of heavy metals found in irrigation water from the three wells in the study area (i.e. Wadi Allouga, Wadi Nasab and Wadi Seih) were higher than the maximum permissible limits for drinking water and can cause toxic reactions in crop plants grown on soils of the study area. The degree of contamination was pronounced in the upstream of water wells and decreased in the direction of downstream, since, Cu ranged from 10.5 to 12.4 mg Kg⁻¹, Zn ranged from 0.02 to 0.03 mg Kg-1, Pb ranged from 0.7 to 0.9 mg Kg⁻¹, Co ranged from 0.1 to 0.3 and U ranged from 0.2 to 1.0 mg Kg⁻¹. The germination and growth characteristics of sunflower (Helianthus Annuus) plant when used as phytoremediation technology for milling solid wastes were higher in plants grown on milling solid wastes which were previously chemically treated by citric acid. The absorption efficiency of Cu, Zn, Mn, Ni, U and Th were higher in the roots than in the vegetative part of sunflower as compared to plants grown on soil taken from Wadi Allouga and Wadi Nasab and milling solid wastes treated with water tap.

Key words: Milling solid wastes, Heavy metals, Radioactive elements, Chemical processing, Environmental pollution, Phytoremediation, Sunflower, South western Sinai.

ACKNOWLEDGEMENT

The author would like to express my thanks and deep gratitude's to **Prof. Dr. Mohamed E. El Nennah**, Prof. of Soil Sci.; **Prof. Dr. Eid Morsy Khaled**, Prof. of Soil Sci., Faculty of Agriculture, Ain Shams University and **Prof. Dr. Nasr Abd El-Azez Abd El-Fattah**, Research Prof. of Physical inorganic Chemistry, Production Sector, Nuclear Materials Authority (NMA), for supervising the present work as well as for fruitful suggestions, guidance, and precious advices.

He owe special gratitude to **Prof. Dr. Ibrahim El kattany El Sayed El Aassy**, Prof. of Uranium geology, **Prof. Dr. Fadia Youssef. M. Ahmed** Prof. of Ore-Processing, **Dr. Rania M. Abd El Hakm Mahdey** Associate Prof. of Ore-Processing and **Dr. Nareman Mosleh Harpy** Associate Prof. of Bio-physics (NMA) for their continuous encouragements and useful scientific discussions.

Special thanks to **Prof. Dr Kamal Abd Elbaky** president of Prod. Div., **Prof. Dr Omnia Al Hosiney**, Associate president Prod. Div. (NMA) and thanks to all the members of the Pilot Plant Dept., for their faithful support and **Dr. Naglaa Abd El-kader** for helping in the chemical analyses.

The author would like to offer his great thanks to all the members of **Abu Zeneima Project** (NMA) and **Dr. Mohamed Hosny** of Agricultural Research Center - Giza for helping during the field work.

The continuous encouragement, compassion and dedication endowed by his family, he would admit to his parents, his wife and his sons Rawan; Raghad; Abdeen and Hamza.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	X
1. INTRODUCTION	1
2. LITERATURE REVIEW	7
2.1. Characteristics and distribution of heavy metals and	
radioactive elements	7
2.1.1. Definition of heavy metals and radioactive elements	7
2.1.2. Geology and geochemistry of heavy metals and	
radioactive elements in the study area	7
2.1.3. Environmental pollution with heavy metals and	
radioactive elements	10
2.1.3.1. Soil pollution of heavy metals and radioactive elements	11
2.1.3.2. Groundwater pollution of heavy metals and radioactive	
elements	14
2.1.3.3. Plant pollution of heavy metals and radioactive	
elements	15
2.2. Remediation of soil and milling solid wastes	16
2.2.1. Chemically remediation methods	16
2.2.1.1. Sulfuric acid method	16
2.2.1.2. Citric acid method	18
2.2.2. Bioremediation methods	20
2.2.2.1. Biological remediation methods	20
2.2.2.2. Phytoremediation methods	23
3. MATERIALS AND METHODS	25
3.1. Geologic history of the study area	25
3.2. Sampling and preparation of samples	27
3.2.1. Original ore material sampling	30
3.2.2. Milling solid wastes sampling	30

	3.2.3. Soil sampling	31
	3.2.4. Herb weeds plant sampling	32
	3.2.5. Water sampling	33
	3.3. Radioactivity analysis	35
	3.3.1. Sample preparation	35
	3.3.2. Absorbed gamma dose rate	36
	3.3.3. Radiological hazards	37
	3.4. Leaching experiments for treatment of milling solid wastes	38
	3.4.1. Agitation leaching method	39
	3.4.1.1. Treatment using sulfuric acid	39
	3.4.1.2. Treatment using citric acid	39
	3.4.1.3. Particles size	40
	3.4.2. Column leaching method	40
	3.4.2.1. Treatment using tap water	41
	3.4.2.2. Treatment using sulfuric acid	42
	3.4.2.3. Treatment using citric acid	42
	3.5. Microbiological techniques	43
	3.5.1. Media preparation (Czapek's medium)	43
	3.5.2. Fungal isolation	43
	3.5.3. Purification and identification of isolated fungi	43
	3.6. Phytoremediation experiment	44
	3.6.1. Preparation of soil and milling solid wastes sample	45
	3.6.2. Preparation of the pots for planting	45
	3.6.3. Sunflower plant sampling	46
	3.7. Methods of analysis of original ore material, milling solid	
	wastes, soil, water wells and plants samples	47
4	RESULTS AND DISCUSSION	50
	4.1. Characterization of original ore material, milling solid	
	wastes and mixed soil collected from Wadi Allouga and	
	Wadi Nasab areas	50
	4.1.1 Physical characteristics	50
	4.1.2. Mineralogical characteristics	50

4.1.3. Chemical characteristics	52
4.1.4. Radionuclides characteristics	54
4.1.5. Distribution of heavy and radioactive elements in	
different particles size of milling solid wastes	56
4.2. Effect of chemical treatments of milling solid wastes	58
4.2.1. Effect of different parameters on the leaching of heavy	
and radioactive elements by agitation	58
4.2.1.1. Effect of sulfuric acid concentration	58
4.2.1.2. Effect of citric acid concentration	60
4.2.1.3. Effect of particles size	61
4.2.2. Effect of different parameters on percolation column	
leaching for milling solid wastes	64
4.2.2.1. Effect of successive leaching by tap water on leaching	
efficiency	64
4.2.2.2. Effect of successive leaching by sulfuric acid solution	
on leaching Efficiency	65
4.2.2.3. Effect of successive leaching by citric acid solution on	
leaching Efficiency	66
4.2.3. Biomass screening for solid wastes	68
4.2.3.1. Factors affecting bioleaching	68
4.2.3.2. Microorganisms isolation and identification	68
4.3. Environmental contamination in Wadi Nasab and its	
Surroundings	70
4.3.1. Chemical contents of heavy and radioactive elements in	
soil	70
4.3.2. Chemical contents of heavy and radioactive elements in	
herb weeds Plants	72
4.3.3. Chemical contents of heavy and radioactive elements in	
water wells	74
4.4. Phytoremediation of contaminated soil and milling solid	
wastes	76
5. SUMMARY	89

IV

6. CONCLUSION	95
7. REFERENCES	97
8. ARABIC SUMMARY	120
9. ARABIC ABSTRACT	126

LIST OF TABLES

Γable	Title	Page
No.		
1	Maximum contamination levels for heavy metals	
	concentration in air, soil and water	11
2	Average radioactivity of uranium in several types of rocks	
	and soil	13
3	Radioactive characteristics of natural uranium	14
4	location of original ore materials, milling solid wastes,	
	soil profiles, heap weeds and water wells samples	27
5	Texture of original ore material and milling solid wastes	
	from Wadi Allouga and Wadi Nasab areas	50
6	Chemical composition of original ore material, milling	
	solid wastes and mixed soil in the study area	54
7	Specific activity of radionuclides in (Bq kg ⁻¹) for original	
	ore material, milling solid wastes and mixed soil samples	55
8	The dose rate, radium equivalent activity, external,	
	Internal hazard indices and gamma indices for original	
	ore material, milling solid wastes and mixed soil sample	56
9	Concentrations of heavy and radioactive elements and	
	precent elements content of milling solid wastes in	
1.0	different particles	57
10	Effect of sulfuric acid concentration on leaching of heavy	
	and radioactive elements from milling solid wastes in	50
1.1	Wadi Allouga area	59
11	Effect of sulfuric acid on leaching efficiency of heavy and	
	radioactive elements from milling solid wastes in Wadi	50
10	Allouga area	59
12	Effect of citric acid concentration on leaching of heavy	
	and radioactive elements from milling solid wastes in	60
	Wadi Allouga area	60