

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Histological Effect of Platelet Rich Plasma Versus Adipose Tissue Derived Mesenchymal Stem Cells on Carbon Tetrachloride Induced Liver fibrosis in Albino Rat

Thesis

Submitted for Partial fulfillment of M.D. Degree in Histology

By

Faten Abd Elzaher Mahmoud Abd Elzaher

Assistant lecturer of Histology and Cell Biology Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Dr. Maher Mohammed Emara

Professor of Histology and Cell Biology Faculty of Medicine - Ain Shams University

Prof. Dr. Manal Hassan Moussa

Professor of Histology and Cell Biology Faculty of Medicine - Ain Shams University

Prof. Dr. Mona Hussien Raafat Ahmed

Professor of Histology and Cell Biology Faculty of Medicine - Ain Shams University

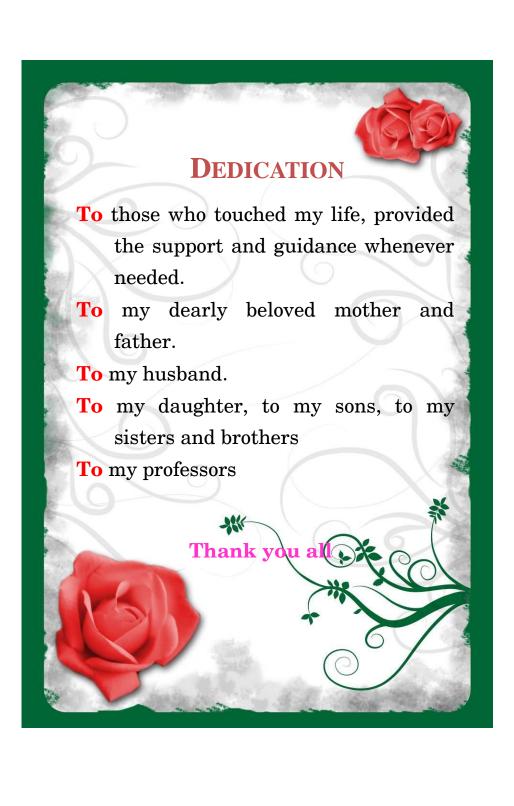
> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First of all I would like to thank **God** who allowed and helped me to accomplish this work and only by his will everything can be achieved.

I would like to express my respectful thanks and profound gratitude to Professor **Dr. Maher Mohammed Emara,** Professor of Histology and Cell Biology Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made the completion of this work possible.


I am also delighted to express my deepest gratitude and thanks to Professor **Dr. Manal Hassan Moussa**, Professor of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to Professor **Dr. Mona Hussien Raafat,** Professor of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, for her encouragement, kindness, supervision and cooperation in this work.

I would like to express my thanks to my friends and colleagues at the Histology department, Faculty of Medicine- Ain Shams University for their support till this work was completed.

Faten Abd Elzaher

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Histogram	v
Abstract	vi
Introduction	1
Aim of the Work	3
Review of Literature	4
Materials and Methods	34
Results	61
Discussion	154
Summary and Conclusion	167
Recommendations	
References	173
Arabic Summary	—

List of Abbreviations

Abb.	Full term
μ1	Microliter
-	Adenosine diphosphate
	Adipose tissue derived mesenchymal stem cells
	Alcoholic fatty liver disease
ALD	Alcoholic liver disease
ALT\AST	Alanine transaminase\Aspartate transaminase
AT	Adipose tissue
ATP	Adenosine tri-phosphate
bFGF	Basic fibroblast growth factor
BM	Bone marrow
BMSCs	Bone marrow mesenchymal stem cells
CCL3	Trichloromethyl free radical
CCL3O2	Trichloroperoxyl radical
CCL4	Carbon tetrachloride
CD	Cluster of differentiation
c-Met	Mesenchymal to epithelial transition receptor
CYP	Cytochrome P
DMEM	Dulbecco's modified Eagle's medium
ECM	Extracellular matrix
EDTA	Ethylene diamine tetra-acetate
EGF	Epidermal growth factor
EGFR	Epidermal growth factor receptor
EV	Extracellular vesicles
FBS	Fetal bovine serum
GFs	Growth factors
gm	Gram
hASCs	Human Adipose-derived Stem Cells

List of Abbreviations Cont...

Abb.	Full term
HBV	Henatitis R virus
HCV	-
	High-density lipoproteins
	Hepatocyte growth factor
	Hepatocyte-like cells
	Hepatic Stellate Cell
IFN-γ	-
•	Insulin like growth factor
IL	_
	Interferon regulatory factor
JAK	
KCs	
kg	-
_	Low-density lipoproteins
	Human long-chain non-coding RNA
	Leukocyte-poor PRP
	Lipopolysaccharide
	Leukocyte-rich PRP
	Lymphocyte Ag 6C
MFBs	
ml	•
	Non-alcoholic fatty liver disease
	Non-alcoholic steatohepatitis
	Platelet average plasma
	Periodic acid-schiff reagent.
	Phosphate buffered Saline
I CINA	Proliferating Cell Nuclear Antigen

List of Abbreviations Cont...

Abb.	Full term
PCR	Polymerase chain reaction
	Platelet derived growth factor
	Partial hepatectomy
	Platelet poor plasma
	Platelet rich plasma
	Rough endoplasmic reticulum
	Reactive oxygen species
	Revolution per minute
-	Smooth endoplasmic reticulum
	Statistical Package for the Social Sciences
	Sex determining region of Y chromosome
	Signal transducers and activators of transcription 1
	Stromal vascular fraction
TAA	
	Transforming growth factor
•	Transforming growth factor beta
TIRAP	Toll-interleukin 1 receptor domain containing adaptor protein
TNF	Tumor necrosis factor
uPA	Urokinase-type plasminogen activator
VGEF	Vascular endothelial growth factor
VLDLs	Very low-density lipoproteins
WBCs	White blood cells
Wnts	Wingless-related integration site
α- SMA	Alpha smooth muscle actin

List of Tables

Table No.	Title	Page	No.
Table (1):	Showing changes in area percentage collagen and area percentage of α sn muscle actin in different groups:	nooth	144
Table (2):	Showing changes in the mean numb PCNA positive cells in different groups		147
Table (3):	Showing changes in area percentage vimentin in different groups:	•	149
Table (4):	Showing changes in the mean numb caspase positive cells in different group		151
Table (5):	Showing changes in mean area perceiof glycogen in different groups:	_	153

List of Histogram

Histo. No.	Title	Page No.
Histogram (1):	The mean values of the percentage of collagen among the different study gro	fibers
Histogram (2):	The mean values of the percentage of alpha sm muscle actin among the diff study groups.	nooth ferent
Histogram (3):	The mean number of P positive cells among the diff study groups.	ferent
Histogram (4):	The mean area percentage of vimentin among the diff study groups.	ferent
Histogram (5):	The mean number of caspa positive cells among the diff study groups	erent
Histogram (6):	The mean area percentage glycogen among the different groups	study

Abstract:

Background: Liver cirrhosis is a significant lethal health problem all over the world. Liver transplantation is the only efficient treatment. Unfortunately, it is limited due to many obstacles. Therefore, alternative treatments are required for cirrhosis. Platelet rich plasma (PRP) and adipose tissue derived mesenchymal stem cells (ADSCs) are a challenging measure for treatment of cirrhosis.

Aim of the work is to assess the effect of PRP versus ADSCs on experimentally induced liver fibrosis in albino rats.

Material and Methods: forty-two adult female rats were included in this study. In addition, twenty young-weaned albino rats (five males and fifteen female) were used for preparation of ADSCs and PRP. The adult females were divided into three main groups: Group I: control group. Group II: that received carbon tetrachloride (CCL4) in dose of 0.5 mg/kg twice weekly for six weeks. They were subdivided into 2 subgroups; subgroup IIA where rats were sacrificed after the last injection and subgroup IIB where rats were left for spontaneous recovery for four weeks after the last CCL4 injection. Group III: which were further subdivided into 2 subgroups; subgroup **IIIA** where rats were subjected to fibrosis then received PRP in a dose of 1ml/kg twice weekly for four weeks and then were sacrificed. Whereas, subgroup IIIB that were subjected to fibrosis and then received ADSCs in a dose of 3x10⁶ cells/rat once. Liver specimens were prepared for histological and techniques. Morphometrical immune-histochemical and statistical studies were done.

Results: CCL4 injection resulted in distortion of the liver architecture and multiple injuries in hepatocytes including vacuolations in the cytoplasm and pyknotic nuclei. In addition, it resulted in hepatic fibrosis especially surrounding the central vein and portal areas. Treatment by PRP resulted in an obvious histological improvement in hepatic structure and most

hepatocytes showed acidophilic cytoplasm with basophilic granules and vesicular nuclei and significant decrease in hepatic fibrosis (p<0.05). Unfortunately, few areas in the field of hepatic tissue were not improved. Moreover, there was significant increase in the mean number of Proliferating Cell Nuclear Antigen (PCNA). In addition, there was a significant decrease in the area percentage of α -SMA positive cells, the mean number of caspase-3 positive cells and area percentage of anti-vimentin (p<0.05). ADSCs treatment also resulted in improvement of hepatic structure in the form of significant decrease in hepatic fibrosis and significant increase in the mean number of PCNA. There was also a significant decrease in the area percentage of α -SMA positive cells, the mean number of caspase-3 positive cells and area percentage of anti-vimentin as compared to untreated groups (P<0.05).

Conclusion: There was non-significant difference between PRP and ADSCs in treatment of hepatic fibrosis. Accordingly, PRP could be an adjuvant treatment for hepatic fibrosis which needs more investigations.

Key words: liver fibrosis, CCL4, PRP, ADSCs, rat.