

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The timing of parathyroid hormone measurement as an early Predictor of postoperative hypocalcemia post total Thyroidectomy Prospective Study

Thesis Submitted for Partial Fulfillment of Master Degree in General Surgery

Presented by
Nabil Abd Elrahman Al Nagar
M.B.B.Ch

Under Supervision of

Prof. Dr. Ayman Abd-Allah Abd-Raboh

Professor of General and Endocrine surgery Faculty of Medicine - Ain Shams University

Prof. Dr. Mahmoud Saad Farahat

Professor of general and Endocrine surgery Faculty of medicine - Ain Shams University

Dr. Ahmed Fouad Amer

Lecturer of general surgery
Faculty of medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2021

List of Contents

Title	Page No.
List of abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Litrature	
Chapter (1): Anatomy of Thyroid Gland	5
Chapter (2): Anatomy of Parathyroid Gland	18
Chapter (3): Surgical Technique of Thyroidectom	y 27
Chapter (4): Pathophysiology of post thyrohypocalcaemia	<u> </u>
Patients and Methods	76
Results	81
Discussion	105
Summary and Conclusion	114
References	116
Arabic Summary	

List of abbreviations

Ca : Calcium

CaSR : Calcium Sensing Receptor

CCA : Common Carotid Artery

EBSLN : External Branch of the Superior Laryngeal Nerve

ECA : External Carotid Artery

GFR : Glomerular Filtration Rate

IBSLN : Internal Branch of Superior Laryngeal Nerve

ICA : Internal Carotid Artery

IP : Inferior Parathyroid

IPTH - 24hr : Identify Parathyroid Hormone -24

IPTH : Intact Parathyroid Hormone

ITA : The Inferior Thyroid Artery

LGT : Levator Glandulae Thyroideae

LMA : Laryngeal Mask Anesthesia

Po : Postoperative

PTH : Parathyroid Hormone

RLN : The Recurrent Laryngeal Nerve

SCM : Sternocleidomastoid

SLN : Superior Laryngeal Nerve

SMNG : Simple Multi-Nodular Goiter

SMNG : Simple Multi-Nodular Goiter

SP : Superior Parathyroid

STA : Superior Thyroid Artery

TALH : The ascending Loop of Henle

TT : Total thyroidectomy

VDR : Vitamin D Receptor

List of Tables

Table. No.	Title	Page No.
Table (1): Do	efinition of extent of resection	29
Table (2): Ca	auses of increase and decrease of intestinal calcium absorption	on 50
	ctors influencing renal Ca excretion	
Table (4): Pa	nrathyroid Hormone Actions	58
Table (5): C	alcium and vitamin D metabolites in the management of ch	ronic
hy	poparathyroidism	74
Table (6): Di	istribution of the studied cases according to Demographic Da	ata: 82
Table (7): Di	istribution of the studied cases according to Nature of the dis	ease: 83
Table (8): D	distribution of the studied cases according to Ca, Corrected	d Ca,
S.	albumin, IPTH, 25-OH -vitamin D levels, Magnesium	and
Pl	nosphorous Pre-operative:	84
	Distribution of the studied cases according to Ca, Corrected	
	albumin, IPTH, 25-OH -vitamin D levels, Magnet	
	nosphorous, Signs & or Symptoms and Hypocalcemia 2	
_	ost-operative:	
` '	Distribution of the studied cases according to Ca, Corrected	*
	albumin, IPTH, 25-OH -vitamin D levels, Magnesium	
	nosphorous 72 hr. post-operative:	
	Distribution of the studied cases according to Complication urgical complication:	
	Comparison between Pre-operative and Post 24hr Regarding	
	orrected Ca, S.albumin, IPTH, 25-OH -vitamin D le	-
	agnesium and Phosphorous:	
	Comparison between Pre-operative and Post 72hr Regarding	
	orrected Ca, S.albumin, IPTH, 25-OH -vitamin D, Magne	
	nd Phosphorous:	
	Comparison between Post 24hr and Post 72hr Regarding	
	orrected Ca, S.albumin, IPTH, 25-OH -vitamin D le	
M	agnesium and Phosphorous:	90
Table (15): (Correlation between IPTH and Corrected Ca With Age, We	eight,
H	eight, S.albumin, 25-OH -vitamin D levels, Magnesium	and
Pl	nosphorous Post 24 hr.	92
Table (16):	Correlation between IPTH and Corrected Ca With Age, We	eight,
	eight, S.albumin, 25-OH -vitamin D levels, Magnesium	
Pl	nosphorous Post 72 hr.:	93

List of Tables (Cont..)

Table.	No.	Title	Page No.
Table	(17):	Comparison between Non Hypocalcemia (no. =32) Hypocalcemia (no. =8) regarding Ca, Corrected Ca, S.alb IPTH, 25-OH -vitamin D levels, Magnesium and Phosph	oumin,
Table	(18):	Pre-Operative: Comparison between Non Hypocalcemia (no. =32) Hypocalcemia (no. =8) regarding Ca, Corrected Ca, S.alb IPTH, 25-OH -vitamin D levels, Magnesium and Phosph Post 24hr:	and numin, norous
Table	(19):	Comparison between Non Hypocalcemia (no. =32) Hypocalcemia (no. =8) regarding Ca, Corrected Ca, S.alb IPTH, 25-OH -vitamin D levels, Magnesium and Phospl Post 72hr:	and oumin, horous
Table	(20):	Comparison between Non Hypocalcemia (no. =32) Hypocalcemia (no. =8) regarding Complication and Su complication:) and irgical
Table	(21):	ROC curve (Non Hypocalcemia and Hypocalcemia) regarding IPTH 24 hr. Post and IPTH 72 hr. Post thyroidectomy:	total

List of Figures

Fig. No. Title	Page No.
Figure (1): Anatomy of the thyroid gland	5
Figure (2): Thyroid development-anterior view.	
Figure (3): Aortic arch development and recurrent laryngeal nerve	
Figure (4): Thyroid development - midline sagittal	
Figure (5): Thyroid anatomy. Anterior, lateral, and cross-sectional	
Figure (6): Arterial supply of the thyroid gland and venous drainage	
of the thyroid gland	12
Figure (7): The blood supply of the thyroid gland	14
Figure (8): Classification scheme for regional lymph node basins in	
the neck	15
Figure (9): Nerves related to the thyroid gland	17
Figure (10): Development of Parathyroid Glands	19
Figure (11): Anatomy of parathyroid glands as viewed from posterior	20
Figure (12): Locations of parathyroid glands	23
Figure (13): Arterial supply of parathyroid glands	24
Figure (14): The location and frequency of ectopic superior	26
Figure (15): Thyroid pillow	32
Figure (16): The patient is positioned supine on the operating table,	
which is maintained in a reverse Trendelenburg position	
with the neck extended	33
Figure (17): Intraoperative situation after creation of the superior	
skin-platysma flap which is secured with threads	34
Figure (18): The fascia over the strap muscles are incised and the	
muscles on each side are separated in the midline	34
Figure (19): Division in the midline between the strap muscles	35
Figure (20): Dissection of the superior pole with ligation of the	
superior thyroidal artery	37
Figure (21): Lateral and caudal retraction of the upper pole of the	
thyroid in order to open up the avascular space between the	
lobe and the cricothyroid muscle, thus exposing the	
external branch of the superior laryngeal nerve	
Figure (22): Identification of the recurrent laryngeal nerve	39
Figure (23): Topographic relationship between the inferior thyroid	
artery and the tubercle of Zuckerkandl to the re-current	
laryngeal nerve and the superior parathyroid gland	39

List of Figures (Cont ..)

rig. No.	rage ino.
Figure (24): Intraoperative finding of a non-recurrent inferior	or
laryngeal nerve	40
Figure (25): Identification and preservation of the parathyroid gland	42
Figure (26): Last steps of dissection for thyroid lobectomy	44
Figure (27): Organ system integration of calcium homeostasis	47
Figure (28): Calcium distribution in the body	48
Figure (29): Intestinal pathways for calcium, phosphorus, an	ıd
magnesium absorption	49
Figure (30): Schematic illustration of the reabsorption of calcium	n,
phosphorus, and magnesium by different segments of the	
nephron	52
Figure (31): Model of calcium and magnesium absorption by dista	al
convoluted tubules	
Figure (32): Regulation of serum phosphate (P) homeostasi	
interface with serum calcium (Ca) homeostasis at the	
kidney	
Figure (33): Primary amino acid sequence of human calcitonin (in the	
center cascade), in comparison with the salmon (outer) an	
eel (inner) calcitonins. The variations of amino aci	
sequences from human calcitonin are indicated	
Figure (34): Overview of vitamin D synthesis, intake, and activation	
Figure (35): Vitamin D, calcium homeostasis and aging	
Figure (36): Distribution of the studied cases according to Sex	
Figure (37): Distribution of the studied cases according to	
Comorbidity	
Figure (38): Distribution of the studied cases according to Nature of	
the disease	
Figure (39): Distribution of the studied cases according to	
Complication	
Figure (40): Distribution of the studied cases according to Surgical	
complication	
Figure (41): Corrected Ca Pre-operative, 24hr post-operative and 72hr post-operative	
72hr post-operative	
onerative	ı- 91

List of Figures (Cont ..)

Fig. No.	Title	Page No.
Figure (43):	Positive Correlation between IPTH 24 hr. Post and	
Cor	rrected Ca 24 hr. Post TT	93
Figure (44): 1	Positive Correlation between IPTH 72 hr. Post TT and	
Cor	rrected Ca 72 hr. Post TT	94
Figure (45): 5	Shows the difference between (non Hypocalcemia group	
and	l Hypocalcemia group) regarding Corrected Ca Post	
241	ır	100
Figure (46): S	shows the difference between (non Hypocalcemia group	
and	l Hypocalcemia group) regarding IPTH Post 24hr	100
Figure (47): \$	Shows the difference between (non Hypocalcemia group	
and	Hypocalcemia group) regarding IPTH Post 72hr	102

Introduction

Thyroidectomy is one of the most common head and neck surgeries currently performed and although considered a safe procedure with low morbidity, it may present some complications. Postoperative hypocalcemia is the most common complication (particularly following total thyroidectomy) and may increase the length of hospital stay. The incidence of this event varies widely (1.6–68%), reflecting the considerable heterogeneity among the studies (*Filho et al.*, 2018).

The occurrence of postoperative hypocalcemia may be influenced by various factors including surgeon/surgery features (surgeon's experience, technical difficulties, surgical extent and duration, surgical complications related to parathyroid glands), patients' characteristics (age, gender), underlying diseases/surgery indications (thyroid auto- immunity, large goiters, thyroid carcinoma, thyrotoxicosis) and biochemical factors (metabolism of calcium, vitamin D, phosphorus, magnesium) (*Cmilansky & Mrozova*, 2014).

Regardless, the main reason for this complication is acute parathyroid dysfunction after surgery, which may be due to mechanical or thermal trauma, as well as devascularization or accidental removal of the parathyroid glands (*Raffaelli et al.*, 2016).

There is no consensus on the definition of post-thyroidectomy hypocalcaemia. Several authors employ biochemical criteria: total and/or ionized serum calcium below a cut-off level. However, there is no constant calcium threshold below which symptoms occur, and

many biochemically hypocalcaemic patients recover in a few days without symptoms (*Castro et al.*, 2018).

After thyroid operations, a physiological decrease in the serum calcium level can be observed in 12-24 hours and most of these cases automatically recover in 24 hours. Simultaneously, serum phosphate decreases in a much lesser degree. Hemodilution, renal tubular calcium absorption amount and calcitonin secretion which are caused by antidiuretic hormone released after surgery based stress can lead to these changes (*Glinoer et al.*, 2000).

postoperative hypocalcemia may be an isolated laboratory finding or present with symptoms, usually about 24–48h after the surgery although, less frequently, they may occur in up to 4 days.In most cases the hypocalcemia is mild and presents with spontaneous resolution, however it may present in a severe form in some cases, leading to concerns in the clinical practice due to the difficulty to recognize it rapidly in those patients and to the possible delay until its manifestation (*Filho et al.*, 2018).

Hospital discharge on the first postoperative day (1st PO) in thyroidectomies is reported in the literature as being safe. The benefits of hospital discharge on the 1st PO compared to prolonged hospitalization include lower costs, less postoperative complications and better psychological outcomes. However, in most symptomatic patients, hypocalcemia develops on the second postoperative day (2nd PO) (*Rosa et al.*, 2015).

The nadir for hypocalcemia typically occurs at around 24–48 hours postoperatively but may be as delayed as post-op day 4. Therefore, detecting patients requiring calcium replacement therapy

with serial calcium measurements can take multiple blood tests over several days. Placing all patients on calcium therapy unnecessarily commits many patients to unnecessary treatment and puts them at risk for hypercalcemia. A clinical laboratory method for early prediction of postoperative hypocalcemia could, therefore, facilitate earlier implementation of treatment, and early discharge (*Le et al.*, 2014).

In the context of escalating health care costs, a number of initiatives have focused on various ways to facilitate timely hospital discharge without compromising patient safety. The importance of a reliable measure to predict a person's relative risk for developing clinically significant hypocalcemia following thyroidectomy should not be underestimated. Because of its relatively shorter half-life, changes in parathyroid hormone (PTH) precede changes in calcium by hours. Intraoperative PTH has been less readily adopted for use during thyroidectomy. There is no consensus about the best time to obtain PTH levels for accurately predicting a patient's risk for clinically significant hypocalcemia. It is also unclear whether the absolute value of PTH versus the percentage change from preoperative to intraoperative/ postoperative levels is a better predictor for postoperative hypocalcemia (*Lee, D. et al.*, 2015).

Serum calcium levels are controlled by the parathyroid hormone (PTH), which has a half- life of approximately 2–5 min. Because of this feature, the levels of intact PTH (IPTH) and/or the percent decline of its serum concentrations during the first hours or days after surgery has been studied and correlated with the occurrence of postoperative hypocalcemia (*Filho et al.*, 2018).

Aim of the Work

The aim of this study is to evaluate the role of IPTH as an early marker of postoperative hypocalcemia. Using a prospective design, to compare and determine the most accurate cut-off point of IPTH, as well the best time-point after surgery to measure it.