

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Role of MRI evaluation in acute secondary inability to walk in children

Thesis

Submitted for Partial Fulfillment of MD Degree in Radiodiagnosis

Presented by Kareem Hamed Sedeek Abdel Raheem M.Sc. Radio-diagnosis

M.Sc. Radio-diagnosis

Supervised By

Dr. Khaled Aboualfotouh Ahmed

Professor of Radio-diagnosis Faculty of Medicine / Ain-shams University

Dr. Sahar Mohamed Ahmed Hassanein

Professor of Pediatrics
Faculty of Medicine / Ain-shams University

Dr. Noha Mohammed Osman

Professor of Radio-diagnosis
Faculty of Medicine / Ain-shams University

Dr. Mennatallah Hatem Shalaby

Assistant Professor of Radio-diagnosis Faculty of Medicine / Ain-shams University

> Faculty of Medicine AinShamsUniversity 2021

List of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Work	4
Review of literature:	
• Causes and pathologicalconsiderations	5
• MRI evaluation in secondaryinability to w	alk in
children	17
Patients and methods	33
Results	43
Illustrative cases	76
Discussion	100
Summary and conclusion	109
References	111
Arabic Summary	

List of Abbreviations

ADEM..... Acute disseminated encephalomyelitis.

AHEM..... Acute hemorrhagic encephalomyelitis.

ATM..... Acute transverse myelitis.

CNS..... Central nervous system.

CSF..... Cerebrospinal fluid.

CT..... Computed topography.

DTPA..... Diethylenetriaminepenta-acetic acid.

DW..... Diffusion weighted images.

EMG..... Electromyograph.

ER..... Emergency.

FLAIR..... Fluid-attenuated inversion recovery.

GBS..... Guillain-Barré syndrome.

GFR Glomerular filtration rate.

GIT..... Gastrointestinal tract.

H..... Hours.

ICU..... Intensive care unit.

IgG..... Immunoglobulin G.

IV..... Intra-venous.

Kg..... Kilogram.

LMN..... Lower motor neuron.

MCA..... Middle cerebral artery.

Mg..... Milligram.

Ml..... Milliliter.

mm...... Millimeter.

List of Abbreviations_(Cont...)

mmol..... Millimole.

MRI..... Magnetic resonance imaging.

MS..... Multiple sclerosis.

NPV..... Negative predictive value.

PPV..... Positive predictive value.

Sec..... Second.

T1W..... T1 weighted

T2W..... T2 weighted

UMN..... Upper motor neuron.

mmol..... Millimole.

List of Tables

Table No.	Title	Page No.
Table (1): Neurological	examination of UMN and I	_MN6
Table (2): Diagnostic cr	riteria of ADEM	9
Table (3): Brighton crite	eria for GBS diagnosis	12
Table (4): Acute transve	erse myelitis diagnostic crite	ria14
Table (5): Diagnostic cri	iteria of pediatric MS	16
Table (6): MRI diagno	stic criteria of pediatric M	S31
Table (7): Hughes scal	e	37
Table (8): Pediatric Glas	gow coma scale	38
Table (9): Correlation	between the severity of the	e disease and lesion
distribution i	n MRI:	49
Table (10): Correlation	between the severity of the	disease and pattern
of lesions in	MRI	53
Table (11): Correlation	n between the severity of	the disease and the
enhancemen	t pattern of lesions in MRI	57
Table (12):Correlation	between the prognosis a	nd the lesion size,
distribution a	and enhancement pattern in	MRI60
Table (13): Correlation	between the severity of the	disease and pattern
of nerve root	enhancement in MRI	65
Table (14): Correlation	between the prognosis and	pattern of nerve root
enhancemen	t in MRI	66

List of Figures

Fig. No.	Title Page	No.
Figure (1):	T2-weighted images from a patient with ADEM bilateral diffuse, multifocal, poorly marginated, asymmetric lesions of the white matter, basal ganglia	large a, and
Figure (2)	cortical gray matter	
Figure (2)	: MRI axial fluid-attenuated inversion recovery ima brain shows a tumefactive demyelinating lesion, a (a). MRI shows the disappearance of lesions 3 m	arrow
	after therapy (b)	
Figure (3):	Acute disseminated encephalomyelitis with small less (A) Axial T2-weighted MRI showing bilateral, p	sions. oorly entral, ows), osules easles
Figure (4):	Acute disseminated encephalomyelitis with tumefa	
g (-)	lesions.	
Figure (5)	: Acute disseminated encephalomyelitis with bitha involvement.	lamic
Figure (6):	Acute hemorrhagic encephalomyelitis	
	GBS in a 4-year-old boy with recent diarrheal il presented with a limp.	llness
Figure (8):	Four different MR imaging patterns according to contrast enhancement are shown on post-contrast sa and axial (below) T1-weighted images of the spine	their gittal
Figure (9):	(A) T2 sagittal image of a 3.5- year-old with acute fl paralysis showing a C2–10 extensive transverse my alongside an L2 lesion (arrows). (B) T2 sagittal simage of an 8-year-old with ATM showing 2 small segment plaques within cervical cord (arrow). (C	accid velitis spinal short C) T2
	sagittal image of an 8-year old diagnosed	
Figure (10)	: Examples of typical demyelinating lesions seen in typical	-
	pediatric multiple sclerosis	32

Fig. No.	Title	Page No.
8		\mathcal{C}

Figure (11): FLAIR images from a patient with MS demonstrate	
multifocal, asymmetric, mostly well defined ovoid lesions	
of the white matter, with periventricular predominance	
and sparing of the basal ganglia (arrows)	
Figure (12): Pie chart shows gender of the patients in the study	43
Figure (13): Pie chart shows diagnosis of the patients in the study	44
Figure (14): Bar chart shows most frequently affected areas in MRI	
brain in ADEM	46
Figure (15): Pie chart shows ADEM patients severity of symptoms	47
Figure (16): Pie chart shows ADEM patients with bladder affection	
and affected areas.	48
Figure (17): Pie chart shows group A ADEM patients' MRI pattern	50
Figure (18): Pie chart shows group B ADEM patients' MRI pattern	51
Figure (19): Pie chart shows ADEM patients with bladder affection	
and their MRI findings.	51
Figure (20): Pie chart shows ADEM patients with no bladder	
affection and their MRI findings.	52
Figure (21): Pie chart shows group A ADEM patients' enhancement	
pattern	53
Figure (22): Pie chart shows group B ADEM patients' enhancement	
pattern	54
Figure (23): Pie chart shows ADEM patients with bladder affection	
and their MRI enhancement pattern	55
Figure (24): Pie chart shows ADEM patients with no bladder	
affection and their MRI enhancement pattern.	56
Figure (25): Pie chart shows prognosis of ADEM patients	
Figure (26): Pie chart shows GBS patients nerve roots enhancement	
pattern	62
Figure (27): Pie chart shows GBS group A patients and their nerve	
roots enhancement pattern	63
Figure (28): Pie chart shows GBS group B patients and their nerve	55
roots enhancement pattern	63
100th children pattern	03

Fig. No.	Title Page N	0.
Figure (29): Pie chart shows GBS patients with bladder affection a	and
	their nerve roots enhancement pattern	64
Figure (30): Pie chart shows GBS patients with no bladder affect	ion
	and their nerve roots enhancement pattern	64
Figure (31): Bar chart shows affected areas in ATM patients	67
Figure (32	2): Bar chart shows ATM patients' affected spinal cord ar	eas
	and their Hughes scale.	70
Figure (33	3): MRI demonstrates, (a & b) axial FLAIR WIs show	ing
	bilateral poorly demarcated large patchy areas of rat	her
	symmetrical fronto-parietal periventricular white ma	tter
	lesions of high signal in FLAIR WIs with faint pate	-
	contrast enhancement in post contrast T1W (c &	
	impressive of demyelinating lesions.	
Figure (34	l): MRI demonstrates, (a & b) bilateral rather symmetri	
	fronto-parietal periventricular white matter poor	•
	demarcated patchy areas of abnormal signal high in T2	
	as well as in FLAIR (c), impressive of demyelinat	-
E: (2)	lesions.	
Figure (3:	5): MRI demonstrates, (a, b) sagittal T2W showing	
	segment of bright T2W signals is noted at the anter aspect of the conus medullaris with thickened can	
	equine nerve roots	
Figure (36	(a): MRI demonstrates, (a & c) sagittal and axial T1W sh	
rigure (30	mildly thickened cauda equina nerve roots. (b &	
	sagittal and axial post contrast T1W show sub	
	enhancement of anterior and posterior nerve, pattern 3	
	contrast enhancement.	
Figure (37	'): MRI demonstrates, (a & c) sagittal and axial T1W sh	
6 (-	mildly thickened cauda equina nerve roots. (b &	
	sagittal and axial post contrast T1W show anterior a	•
	posterior nerve roots of the cauda equina which	
	predominant anteriorly, pattern 2 of contri	rast
	enhancement.	85

Fig. No.	Title	Page No.	
Figure (38)	e: MRI demonstrates multiple segments of signare seen within the anterior aspect of the sprangest seen opposite C4 down to D1 levels	oinal cord, the	
	low to intermediate sagittal T1W signal (a) and sagittal	
	bright T2W signal (b) and with associate expansion		87
Figure (39)	: MRI demonstrates, a segment of cord swe		07
rigure (5)	D9 down to L1with anterior column high 7	O 11	
	axial (a) and sagittal T2W (b)	-	89
Figure (40)	subcortical small area of signal alteration T2W show cervical cord short segment of	right occipital . b) sagittal of high T2W	
Figure (41	signal opposite to C3/4 disc		91
rigure (41	focal short segment of swelling showing signal in T2W opposite to C3,4,5 vertebr mostly affecting the left half of the cord image raising suspicion to demylienating p	hyperintense ae. It is seen l in (b) axial	
	of MS		93
Figure (42)	: MRI demonstrates, a D7 vertebra body and	d right lamina	
	osseous lesion with soft tissue component the dorsal spinal cord, eliciting high signal T2W, isointense signal in (c) sagittal TI of homogenous enhancement in (d) post contra	in (a) sagittal W and rather	
	osteolytic rather expansile lesion in axial CT		95
Figure (43	intra-dural extra-medullary soft tissue mass the spinal canal, opposite to C7 down to levels. It is seen at left lateral aspect of the compressing the adjacent cord and displace right side, it shows left neural foramina exte C7/D1 and D1/2 with extra-spinal comport intermediate signal in T1W (a) and T2W	is seen within D2 vertebral he thecal sac, cing it to the nsion through hent. It elicits	
	restricted diffusion (d).		97

Fig. No.	Title Page No.	
Figure (4	4): MRI demonstrates, multiple recent (acute) infarctions	
	are seen at the entire left MCA territory including the left	
	frontal and parietal region as well as left caudate and	
	lentiform nuclei with mild mass effect over the ipsilateral	
	lateral ventricle and mild midline shift to the opposite	
	site, eliciting intermediate to low T1W signals (a), bright	
	T2W/ FLAIR (b, c) and diffusion restriction (d)	99
Figure (45	5): Algorithm for approach of child with acute lower limb	
	weakness.	108

Introduction

hildren are commonly brought with a complaint of acute bilateral lower limbs weakness. A good history and physical examination are paramount in determining etiology. Once a diagnosis is suspected, diagnostic tests should be performed immediately to define the etiology and guide therapy for this emergency situation.

The range of potential etiologies include inflammatory, vascular, traumatic, compression of the spinal cord [intradural or extradural], and infectious causes. The two most frequently encountered disorders causing child inability to walk are acute post-infectious polyneuropathy or Guillain-Barré syndrome and acute transverse myelitis. Nearly all causes of acute paralysis are life threatening and necessitate emergency management (Morgan, 2015).

Guillain–Barré syndrome (GBS) is a common cause of acute flaccid paralysis, characterized by symmetrical weakness of the limbs and hyporeflexia or areflexia. GBS typically occurs after an infectious disease in which the immune response generates antibodies that crossreact with gangliosides at nerve membranes. This autoimmune response results in nerve damage

or functional blockade of nerve conduction (Van Den Berg et al., 2014).

Acute transverse myelitis is a clinical syndrome affecting the spinal cord, which is characterized by acute onset of motor, sensory and autonomic dysfunction. Approximately 20% of cases of acute transverse myelitis occur in children (Wolf et al., 2012).

Acute disseminated encephalomyelitis (ADEM), a common demyelinating CNS disease in children. Otherneuro-inflammatory demyelinating conditions, including multiple sclerosis (MS) is a demyelinating disorder of the central nervous system (CNS), characterized by multifocal areas of CNS demyelination disseminated in time and space. Para-clinical investigations in MS, including magnetic resonance imaging (MRI) of the brain and spinal cord, serve as useful identifiers of abnormalities consistent with and supportive of MS (Eckstein et al., 2012).

The anatomy of the spinal cord and surrounding structures renders the non-invasive imaging methods essential. It is also this anatomical arrangement that creates most of the challenges of imaging the spinal cord(Wheeler-Kingshott et al., 2014).