

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

Phyco-Sorption of Uranium from its Different Processing Effluents

Thesis
Submitted to
Faculty of Science
Ain Shams University

For Ph.D. Degree in Botany

By **Heba Mohamed Abd El-Hakam Mahdy**

B.Sc., Botany-Chemistry (2002) Faculty of Science Ain Shams University

M.Sc., Botany (2011)
Faculty of Science
Ain Shams University

2021

Phyco-Sorption of Uranium from its Different Processing Effluents

Thesis advisors:

Approved

1-Prof. Hoda Anwer Mansour

Prof. of Phycology, Botany Department, Faculty of Science, Ain Shams University

2-Prof. Khalid Fouad Mahmoud

Prof. of Ore Processing, Nuclear Materials Authority

3- Prof. Hisham Kamal Mohamed

Emeritus Prof. of Ore Technology, Nuclear Materials Authority

Head of Botany Department

Prof. Dr. Mohamed E. Tantawy

Phyco-Sorption of Uranium from its Different Processing Effluents

By Heba Mohamed Abd El-Hakam Mahdy B.Sc., Botany-Chemistry (2002) M.Sc., Botany (2011)

This thesis for Ph.D. degree has been approved by:

1-Prof. Ahmed Darwish El-Gamal

Prof. of Phycology, Botany and Microbiology Department, Faculty of Science (boys), Al-Azhar University

2-Prof. Hussein Ibrahim Abdel-Shafy

Prof. of Environmental Chemistry, Water Pollution Research Department, National Research Center

3-Prof. Hoda Anwer Mansour

Prof. of Phycology, Botany Department, Faculty of Science, Ain Shams University

4-Prof. Khalid Fouad Mahmoud

Prof. of Ore Processing, Nuclear Materials Authority

Date of examination: 17 / 4 / 2021

Dedication to my father's Mother's souls

ACKNOWLEDGMENTS

First of all, thanks and praise go to *Allah* for giving me peace and power to accomplish this task.

Special thanks are dedicated to *Prof. Hoda Anwer Mansour* (Faculty of Science, Ain Shams University) and profound appreciation for supervision, helpful encouragement, useful advice and sincere support in this work.

All appreciations & thanks are going to *Prof. Khalid Fouad Mahmoud* (Nuclear Material Authority), for supervising, continuous motivation and sincere support during all stages of the research. All gratitude & debt go to *Prof. Hisham Kamal Mohamed* (Nuclear Material Authority) for preparing, supervising, providing successful direction, providing facilities and constructive discussions in all phases of this work.

The candidate is gratefully indebted to Dr. Samih Nigm, Dr. Mohamed A. Yossif, Dr. Mahmoud Osman, Dr. Emad Afifi Elsheihy, and Dr. Yasmin Abouelsoud for their encouragement, kind assistance, and their sincere help.

Deepest gratitude is dedicated to all Yellow Cake Refining Department team members & colleagues, Nuclear Material Authority for promoting & co-operating. Many thanks are due to the staff members & head of Botany Department, Faculty of Science, Ain Shams University for their help in this work. Also, deep thanks are offered to Gattar Pilot Plant members for supplying the working samples.

ABSTRACT

Heba Mohamed Abdel Hakam Mahdy. Phyco-Sorption of Uranium from its Different Processing Effluents

This work is a good and promising trial for the removal and recovery of uranium using one of the most effective eco-friendly techniques. It concerned with studying the ability of some Egyptian algal taxa to adsorb uranium from its processing effluents such as the waste of Gattar pilot plant. Moreover, removing of some heavy metals in order to recycle this waste as a solution of water shortage was performed. Nine algal taxa were collected from Egyptian sea shores representing the three major divisions of algae (brown, red and green) namely Sargassum latifolium (Turner) C. Agardh, Padina pavonica (Linnaeus) Thivy, *Dictyota dichotoma* (var.) *intricata* (C. Agardh) Greville, Jania adhaerens J.V. Lamouroux, Amphiroa compressa M.Lemoine, Galaxaura elongate J. Agardh, Ulva lactuca Linnaeus, Codium vermilara (Olivi) Delle Chiaje, Coulerpa racemosa (var.) lamourouxii f. requienii (Montagne) Weber-van Bosse, as a marine algae in addition to one fresh water alga Cladophora glomerata (var.) crassior (C. Agardh) Hoek collected from River Nile.

Firstly, this work interested by studying the factors affecting the biosorption process to achieve the maximum biosorption capacities of uranium. Many factors were displayed such as contact time, pH, initial feed concentration, solid/liquid ratio and temperature. The observed data clarified that the highest significantly results of biosorption were 190, 177, and 170 mg/g for *Sargassum latifolium*, *Padina pavonica* and *Dictyota dichotoma*, respectively as brown algae. For green algae were 190, 185, 150 and 110 mg/g for *Cladophora glomerata*, *Ulva lactuca*, *Coulerpa racemosa*, and *Codium vermilara* respectively. And 173, 155 and 110 mg/g for *Jania adhaerens*,

Amphiroa compressa and Galaxaura elongate, respectively (red algae) at 1 h contact time, 1/1000 S:L ratio, 200 ppm uranium as initial concentration at pH 4 in the room temperature for the ten used genera of algal biomasses. Therefore the most efficient algal masses for uranium adsorption from each division were Sargassum latifolium, Cladophora glomerata, Ulva lactuca, and Jania adhaerens.

Then, the study throws the light on the characterization of the algal biomasses by FTIR to distinguish the contributing groups in this process which were variable and envolved several mechanisms depending on uranium concentration and algal type. Also, SEM analysis to study the morphological features and surface characteristics, a final step of characterization was some phycochemical screening of the most efficient algal masses which carried out to investigate the main constituents of algal masses and their effect on the biosorption reaction mechanism i.e (the phytochelators).

Desorption study of the loaded uranium on the algal biomasses was achieved by HCl which gave its higher efficiencies at 95.3, 94.9 %, 90.3, 80.4 and for *Sargassum latifolium*, *Cladophora glomerata*, *Ulva lactuca*, and *Jania adhaerens* respectively at contact time 10 min and 0.1M eluent concentration. However, the minimum elution efficiencies were obtained by EDTA solution (18.5, 18.5 %, 16.57, and 11.5) for *Sargassum latifolium*, *Cladophora glomerata*, *Ulva lactuca*, and *Jania adhaerens* respectively.

The most effective algal masses from each division were applied to treat Gattar's pilot plant waste solution (Uranium effluent). It was concluded that uranium uptake starts after two cycles with efficiencies reaches to 90, 90, 88.4, and 85 % for

Sargassum latifolium, Jania adhaerens, Cladophora glomerata, and Ulva lactuca, respectively under the concluded optimum conditions. Meanwhile, most of other harmful and competitive elements as heavy metals and sulfates were adsorbed in the first two cycles. Finally, about 99 % of the loaded uranium was eluted using optimum elution conditions illustrated before, while the other elements such as iron, calcium, zinc, copper,...etc were eluted using 0.1M EDTA leaving the waste effluent solution suitable for recycling purpose. The algal biomasses were washed with water and can be reused again.

Key words: Uranium biosorption, Desorption; Fresh and marine algae: Gattar; effluents.

TABLE OF CONTENTS

TABLE OF CONTENTS	V
LIST OF ABBREVIATIONS	Vii
LIST OF TABLES	Viii
LIST OF FIGURES	
CHAPTER I INTRODUCTION	1
I.1. Waste Water Sources and Management	3
I.2. Statement of the Problem	
CHAPTER II LITERATURE REVIEW	
II.1- Uranium and its Resources in Egypt	9
II.2. Uranium Processing	
II.3. Role of Biotechnology in Uranium Processing	
II.3.1.Bioleaching of Uranium Ores	13
II.3.2. Biosorption of Uranium from its Effluents	
II.4. Biosorption using Algae	14
II.4.1. Phyco-sorption of Heavy Metals	
II.4.2. Phyco-sorption of Uranium	
II.4.3. Phyco-sorption Mechanism	
II.5- Aim and Objectives of Work	
CHAPTER III EXPERIMENTAL	
Materials and Methods	
III.1. Gabal Gattar as Study Area	37
III.2. Processing of Gattar Uranium Mineralization	38
III.3. Algal Biomasses Sampling	40
III.3.1. Identification and Classification of Algal Samples	
III.4. Uranium Synthetic Solutions	
III.4.1. Uranium Processing Effluents	
III.4.2. Reagents	42
III.5. Specification of the Applied Uranium Effluents	
III.6. Biosorption Processes	
III.6.1. Loading Experiments	
III.6.2. Biosorption Kinetics	
III.6.3. Biosorption Isotherm Modeling	
III.7. Characterization of Algal Biomasses	
III.7.1. Fourier Transform Infra Red (FTIR) Analysis	
III.7.2. Scanning Electron Microscope (SEM) Analysis	
III.7.3. Some Phyco-Chemical Analyses of the Selected St	
Algal Masses	
III.8. Elution Process and Reusability of Algae	53

III.9. Application of Selected Algal Biomasses in the Treatment of	
Gattar Pilot Plant Waste Solution	. 53
III.10. Statistical Analysis	
CHAPTER IV RESULTS AND DISCUSSIONS	. 55
IV.1. Identification and Classification of the Algal Taxa under	
Investigation	. 55
IV.2. Results of Uranium Biosorption using the studied Algae	. 62
IV.2.1. Factors Affecting Uranium Biosorption Process	
IV.2.1.1. Effect of Contact Time upon Uranium Biosorption	. 62
IV.2.1.2. Uranium Biosorption Kinetics using the studied Alg	gae
IV.2.1.3. Effect of pH value upon Uranium Biosorption	
IV.2.1.4. Effect o Solid/Liquid Ratio upon Uranium Biosorpt	
IV.3.1.5. Effect of Initial Concentration upon Uranium	
Biosorption	. 86
IV.2.1.6. Uranium Biosorption Isotherms	. 93
IV.2.1.7. Effect of Temperature upon Uranium Biosorption .	103
IV.2.2. Characterization of Algal Biomasses	
IV.2.2.1. Scanning Electron Microscopy (SEM) Analysis	108
IV.2.2.2. Fourier Transform Infrared (FTIR) Analysis	113
IV.3. Elution Results	
IV.3.1. Effect of Eluent Type upon Uranium De-sorption from the	
Loaded Algae	134
IV.3.2. Effect of Eluent Concentration	138
	142
IV.3.3. Effect of Contact Time	
IV.4. Application of Algal Masses upon Real Uranium Waste Solution	on
IV.4.1. Chemical Characterization of the Applied Uranium Effluents	
SUMMARY	157
CONCLUSION	168
Current Challenge and Aspirations to the Future	
REFERENCES	
	193