

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Preparation and characterization of biosilicate composites for drug delivery applications

A Thesis Submitted for Partial Fulfilment of the Requirements for The Master Degree of Science (M. Sc.)

In Biophysics

Presented by

Noha Mustafa Abd Elazeem

(Noha M. Abdelazeem)

Demonstrator of Biophysics

B.Sc. 2013

Supervisors

Prof. Dr. / Hosnia Mohamed Abu-Zeid

Professor of Nuclear Physics, Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Prof. Dr. / El-Sayed Mahmoud El-Sayed Soliman

Professor of Biophysics, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. / Sherief Mohamed Ahmed Abo-Naf

Professor of Materials Science and Technology, Glass Research Department, National Research Centre.

Preparation and characterization of biosilicate composites for drug delivery applications

A Thesis
Submitted for Partial Fulfillment of the Requirements for The Master Degree of Science (M. Sc.)

In Biophysics

Presented by

Noha Mustafa Abd Elazeem

(Noha M. Abdelazeem)

Demonstrator of Biophysics

B.Sc. 2013

In Partial Fulfilment of the Requirements
For
The Master Degree of Science (M. Sc.)
In Biophysics

Physics Department
Faculty of Women for Arts, Science and Education
Ain Shams University

Student name: Noha Mustafa Abdelazeem Farag Ali

Scientific Degree: B. Sc.

Department: Physics

Name of faculty: Faculty of Women

University: Ain Shams University

B. Sc. Graduation year: 2013

M. Sc. Graduation year: 2021

Dedicated to My Mother

May Allah have mercy on her

ACKNOWLEDGMENT

First and foremost, I must acknowledge my infinite thanks to Allah the almighty, for his help and bless.

Prof. Hosnia Mohamed Abu-Zeid, words would not be enough to express how grateful I am for your guidance and insightful comments that brought this work towards completion.

I owe a deep debt of gratitude and sincere thankfulness to **Prof. El-Sayed Mahmoud El-Sayed Soliman**, for his open door always, encouragement, motivation, support, guide, immense knowledge, and patience throughout the journey.

To **Prof. Sherief Mohamed Ahmed Abo-Naf**, I am immensely appreciative of steering me in the right direction, guide, immense knowledge, sharing expertise, and valuable supervision.

I would like to thank **Dr. Ahmed El-Fiqi**, for his participation and insightful scientific vision in this project.

I am pleased to express My deep appreciation to thank "Nanotechnology and Advanced Materials Central Lab, Agricultural Research Centre", a great place to work and for providing the facilities required to complete my thesis.

The One in whom I have placed My dream on his shoulder, and accommodate My hope with his humanitarian. At that time, I believed that Allah was the master of the situation. He is 'Prof. Khaled Yehia Farroh" Head of Nanotechnology and Advanced Materials Central Lab, Agricultural Research Centre.

I would like to express my deep-felt thanks and gratitude to My dear 'Prof. Gamal Abdel Aziz Meligi" professor of Organic Chemistry, Chemistry department, Faculty of Science Ain Shams university, for his support, encouragement, patience, guide, motivation, and immense knowledge throughout the master journey.

Special thanks go to the head of the physics department **Prof. Manal Sirag and** lovely Biophysics group.

I am pleased to whom help, guided, support me in microbiology tests Dr. Kareem Abdo, Dr. Hesham Elshoky, and Dr. Heba Elzorkany.

A lot of thanks to my lovely one who helped me in a lot of situations in my biological tests Madam Badr Sobh Elsayed.

Thanks to Microbiology and Immunology Department, Faculty of Medicine El Kaser El Ainy.

I would like to express my deep-felt thanks to Mr. Kareem El-Wakeel and Mr. Abed

Ahmed IT manager and Web-Designer for their help.

I owe deep thanks to my dear uncle Prof. Hossam El deen Samir and aunt Prof. Hoda Ali Nour Eldeen to encourage and help me in a lot of situations in my life. Lovely thankfulness with deep gratefulness to my grandmother, grandfather, DaD, uncle Montaser, uncle Atef, aunt Heba, My cousins and My family.

I would like to express my deep-felt thanks to our family friend Dr. Ahmed Diab who helped me in a lot of situations in this project.

Special thanks with lovely gratefulness to my best friends, **Dr. Basma El Assy,**Raghda Ibrahim, and Alaa Rabiea.

"It's not every day that I take the time to let my Mum know how grateful I am for everything she has done for me. So I owe deep thankfulness to my Mum for her efforts and love. All that I am, or hope to be, I owe to My Mum". May Allah have mercy for My Mother

Preparation and characterization of biosilicate composites for drug delivery applications

Approved by:

Prof. Dr. / Hosnia Mohamed Abu-Zeid

Professor of Nuclear Physics, Physics Department, Faculty of women for Arts, Science and Education, Ain Shams University

Prof. Dr. / El-Sayed Mahmoud El-Sayed Soliman

Professor of Biophysics, Physics Department, Faculty of Science, Ain Shams University

Prof. Dr. / Sherief Mohamed Ahmed Abo-Naf

Professor of Materials Science and Technology, Glass Research Department, National Research Centre.

Head of Physics Department Prof. Dr. / Manal Mahmoud Sirag

List of Contents

Title	Page No.
CHAPTER I	-
Introduction & Review of Literature	-
1. Introduction & Review of Literature	1
1.1. Skin Tissue Engineering	1
1.2. Physiology of Wound healing therapy	5
1.3. Mesoporous Silica Nanoparticles & Drug Delivery	7
1.4. Sol-Gel process of MSNs synthesis	8
1.4.1. Sol-gel approach assessed by template synthesis	12
1.4.2. Modified Stöber method for MSNs synthesis	15
1.5. Hydrogels	16
1.5.1 Sodium Alginate as a natural biopolymer	18
1.5.2. Sodium Alginate biopolymer as a drug carrier	21
1.6. Alginate based MSNs nanocomposites hydrogels in drug delivery systems	22
1.7. Ceftriaxone Sodium as an antimicrobial drug model	25
1.8. Antimicrobial activity of the nanoparticles and nanocomposites	28
CHAPTER II	-
Materials & Methods	-
2. Materials and Methods	30
2.1. Chemicals and Supplies	30
2.2. Synthesis of Mesoporous Silica Nanoparticles (MSNs)	30
2.3. In-vitro Ceftriaxone loading onto MSNs	31

2.4. Characterization Techniques of MSNs & CFX loaded MSNs	33
2.4.1. Dynamic Light Scattering and ζ-Potential Measurements.	33
2.4.2. Higher-Resolution Transmission Electron Microscopy (HR-TEM)	33
2.4.3. Small Angle X-Ray Diffraction (SAXD)	34
2.4.4 Nitrogen Adsorption/Desorption Isotherms	34
2.4.5 ThermoGravimetric Analysis (TGA)	34
2.4.6. Fourier Transform Infra-Red Spectroscopy (FT-IR)	35
2.5. Gelation Assay of Ionically Cross-linked Alginate Based Nanocomposites Hydrogel Beads	35
2.6. In-vitro Ceftriaxone loading onto Nanocomposite hydrogels	36
2.7. Characterization Techniques of Nanocomposites & CFX loaded MSNs based hydrogel nanocomposites	37
2.7.1 Environmental Scanning Electron Microscopy & EDAX	37
2.7.2 Atomic Absorption Spectroscopy	38
2.8. Swelling characteristics of hydrogel beads	38
2.9 Part Π: Bacterial reduction evaluation of MSNs and hydrogel nanocomposites	40
2.9.1. Determination of Minimum Inhibitory Concentration (MIC) of CFX and Cu2+ metal ions	40
2.9.2. Colony Forming Unit Counting test	42
2.9.3. Bacterial viability assessment by using Confocal Laser Scanning Microscopy (CLSM)	43
2.10. Statistical analysis	47

CHAPTER III	-
Results and discussion	-
3. Results and Discussion	48
3.1. Characterization of MSNs and CFX loaded MSNs	48
3.1.1. Dynamic Light Scattering (DLS) and ζ-potential measurements	48
3.1.2. Higher Resolution Transmission Electron Microscopy (HR-TEM)	49
3.1.3. Small-Angle X-ray Diffraction (SAXD)	50
3.1.4. Nitrogen Adsorption-Desorption Isotherm	51
3.1.5. Thermo-Gravimetric Analysis (TGA)	52
3.1.6. Fourier Transform Infra-Red Spectroscopy	54
3.1.7. In vitro Ceftriaxone drug loading onto MSNs	56
3.2. Characterization Techniques of Nanocomposites & CFX loaded MSNs based hydrogel nanocomposites	57
3.2.1. Higher Resolution Scanning Electron Microscopy (HR-SEM)	57
3.2.2. Energy Dispersive Analysis X-Ray (EDAX)	64
3.2.3. FT-IR Spectroscopic Analysis	68
3.2.4. ThermoGravimetric Analysis of Nanocomposites	77
3.2.5. In-vitro Ceftriaxone loading onto Nanocomposite hydrogels	80
3.2.6. Atomic Absorption Spectroscopy (AAS)	80
3.2.7. Swelling behaviour of hydrogel beads	81
3.3. Antibacterial activity of CFX loaded MSNs and nanocomposites	85
3.3.1. Minimum Inhibitory concentration (MIC).	85
3.3.2. Colony Forming Unit Counting test	86
3.3.2.1. Mesoporous Silica NPs and Antibacterial Ceftriaxone Drug	86

Model	
3.3.2.2. Calcium alginate hydrogel based MSNs nanocomposite beads	88
and antibacterial Ceftriaxone drug model	
3.3.2.3. Copper alginate hydrogel based MSNs nanocomposite beads	90
and antibacterial Ceftriaxone drug model	
3.3.3. Bacterial viability assessment via Live/Dead BacLight TM staining kits	93
using Confocal Laser Scanning Microscope (CLSM)	
3.3.3.1. Mesoporous Silica NPs and Antibacterial Ceftriaxone Drug	93
Model	
3.3.3.2.Calcium alginate hydrogel based MSNs nanocomposite beads	101
and antibacterial Ceftriaxone drug model	
3.3.3.3. Copper alginate hydrogel based MSNs nanocomposites beads	110
and antibacterial Ceftriaxone drug model	
3.4. Comparison for both Ca-alginate based MSNs and Cu-alginate based	120
MSNs hydrogels and CFX antibacterial drug model	
Conclusions	124
Summary	125
References	127
الملخص العربي	-

List of Figures

Fig. No.	Title	Page No.
Fig. 1.1.	Schematic representation of human skin anatomy.	2
Fig. 1.2.	Different schematic representations of skin regeneration, (A) represents different types of skin grafting approaches. (B)	5
	Cultivation of skin cells with porous biomaterial scaffolds or hydrogels.	
Fig.1.3.	Skin wound healing.	6
Fig. 1.4.	Sol-Gel processing; Bulk processing.	9
Fig. 1.5.	Schematic representation of weakly cross-linked linear polymers in case of acid-catalyzed reaction (A), Highly branched cluster in case of base-catalyzed reaction (B).	10
Fig. 1.6.	Sol-gel processing of Thin-film deposition.	11
Fig. 1.7.	The upper step was monomeric silica addition and the lower step was the primary particles directionally aggregate to form particles.	13
Fig. 1.8.	Schematic representation of a double surfactant system.	14
Fig. 1.9.	Modified Stöber method for MSNs synthesis.	16
Fig. 1.10.	Hydrogel network structure with showing junctions, entanglements, and covalent linkages, Here, MJ is the number average molecular weight between junctions, and Me is the number average molecular weight between entanglements.	17
Fig. 1.11.	Bacteria derived biopolymer and alginate structure (a) Chain conformation (b) Block distribution.	19
Fig. 1.12.	Egg box model and Graphical description of the three possible junctions in alginate gels GG/GG, MG/MG & mixed GG/MG junction.	20
Fig. 1.13	Polymer-based nanocomposites.	22
Fig. 1.14.	The water absorbency of the hydrogels at different pH.	24
Fig. 1.15.	The structural formula of Ceftriaxone Sodium	25
Fig. 1.16.	The basic structure of β-lactam antibiotics (Cephalosporins)	27
Fig. 1.17.	Antimicrobial Targets of CFX.	27