

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of different preparation depth for an inlay-retained bridge on the trueness and precision of intraoral digital scanners

-An in vitro study-

Submitted for Partial Fulfillment of Requirements of the master's Degree of Science in Fixed Prosthodontics, Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Βγ Mohamed Khalid El Sayed

B.D.S Faculty of Dentistry, Ain Shams university (2013)
Dr.mohamedkhaleed@gmail.com
Phone number: (+20) 1010774177

Faculty of Dentistry Ain Shams University 2020

Supervisors

Prof. Tarek Salah Morsi

Professor & Head of Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Dr. Ahmed Ezzat Sabet

Associate Professor of Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Dr. Kamal Khaled Ebeid

Lecturer of Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Tarek Salah Morsi,** Professor, Head of Fixed Prosthodontics Department - Faculty of Dentistry, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmed Ezzat Sabet,** Associate Professor, Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Kamal Khaled Ebeid**, Lecturer of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to **Dr. Yasmine Ashraf, Dr. Omar Effat, Dr. Mazen Atout** for helping me throughout this study.

Mohamed Khalid El Sayed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
Introduction	1
Review of Literature	3
Statement of the Problem	31
Aim of the Study	32
Materials and Methods	33
Results	54
Discussion	65
Summary	71
Conclusion	73
Limitations	74
References	
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1): Table (2):	Representing equipment used in the st Representing the characteristic of scanners	the	
Table (3):	Factorial		
Table (4):	Descriptive statistics for root mean sq (RMS) for trueness of different scan	ners	
Table (5):	and depths of preparation Effect of different variables and interactions on root mean square (RMS	their S) for	
Table (6):	Mean ± standard deviation (SD) of mean square (RMS) for trueness	root s in	
Table (7):	different scanner types Mean ± standard deviation (SD) of mean square (RMS) for trueness different depths of preparation	root s of	
Table (8):	Descriptive statistics for root mean sq (RMS) for precision of different scar	uare iners	
Table (9):	and depths of preparation Effect of different variables and interactions on root mean square (RMS	their	59
Table (10):	mean square (RMS) for precision different scanner types and depth	root n in s of	60
	preparation	• • • • • • • • • • • • • • • • • • • •	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Classification of Impression Materia	ıls3
Figure (2):	Components of accuracy expligraphically.	
Figure (3):	Typodont acrylic cast showing grossample	
Figure (4):	Abrasive stones used for preparation code:TR-018	•
Figure (5):	Depth of group B sample measured mm	
Figure (6):	Bucco-lingual width measured at 3 r	nm38
Figure (7):	Width of the proximal box measur 3.5 mm	
Figure (8):	InEos X5 desktop scanner	40
Figure (9):	InLab window showing reference after scanning.	
Figure (10):	The aquisition unit of Trios 3 shape	43
Figure (11):	The aquisition unit of the Omnicam.	45
Figure (12):	Window of the Cerec premium sh the model after scanning with the Omnicam	e IOS
Figure (13):	Components of the Medit I500 sca system.	-
Figure (14):	The reference scan and the scan IOS imported to the geomagic windo	
Figure (15):	The 2 models after initial and be alignment	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (16):	The 3D comparison represented color map.	
Figure (17):	The generated report	52
Figure (18):	Box plot showing root mean (RMS) for trueness of different so and depths of preparation	canners
Figure (19):	Bar chart showing average root square (RMS) for trueness in d scanner types	ifferent
Figure (20):	Bar chart showing average root square (RMS) for trueness of d depths of preparation	ifferent
Figure (21):	Box plot showing root mean (RMS) for precision of different so and depths of preparation	canners
Figure (22):	Bar chart showing average root square (RMS) for precision in d scanner types and depths of prep (A)	ifferent earation
Figure (23):	Bar chart showing average root square (RMS) for precision in d scanner types and depths of prep (B)	ifferent aration

Introduction

ith the advancement of the digital dentistry over the last years, it becomes so important to evaluate all the computer aided design/computer aided manufacturing (CAD/CAM) devices.

Several intra-oral scanners have been introduced in the market and CEREC (Dentsply Sirona, Bensheim, Germany) was the first intraoral scanner to be introduced in the dental market and since then a great number of intraoral scanners have appeared with different technologies aiming for capturing scans with a high resolution and accuracy.

With the increased pace of life and the increased awareness and the esthetic demand and high expectation from both patients and dentists, also the development of CAD/CAM strategies in the production of restorations with superior performance and high quality from new biocompatible materials, impression taking of tooth preparation become essentially digitized since the fabrication of CAD/CAM based dental restoration demand a digital model.

The success rate of prosthesis depends on several factors, an accurate impression is one of the most important factor to ensure a proper prosthesis from a functional and esthetic aspects.

Conventional impression was utilized to be the sole solution for capturing intra oral data and send it to the laboratory where all the traditional steps were performed starting from disinfecting the impression to pouring, casting, investing down to fabrication of the prosthesis.

Tntroduction

The digital process of construction of dental restoration will eliminate the drawbacks produced by the conventional impression such as the risk of storage and damage, the inconvenience and in appreciation regarding the patient, the prolonged overall treatment time and the risk of contamination.

Studying the accuracy of the intraoral scanners has an important role in developing the digital dentistry. The accuracy of impression is described as trueness and precision. Trueness is the ability of measurements matching the real image. Precision is the ability of measurements to be constantly repeated ⁽¹⁾.