

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Marginal fit of zirconia-reinforced lithium silicate laminate veneers with different thicknesses using two CAD/CAM Protocols

Thesis

Submitted for Partial Fulfillment of the Requirements for the Master degree of Science in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

Presented by

Walid Saeed Atyah Zaki

B.D.S Faculty of Dentistry, Ain Shams University (2012)

Faculty of Dentistry Lin Shams University

Supervisors

Ass. Prof. Maged Mohamed Mohamed Zohdy

Assistant Professor of Fixed Prosthodontics Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Ass. Prof. Ahmed Khaled Aboelfadl

Assistant Professor of Fixed Prosthodontics Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Ass. Prof. Dr. Maged Mohamad Mohamad Zohdy Associate Professor, Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Ahmed Khaled Aboelfadl, Associate Professor, Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to **Dr. Farid Emad Eldien, Dr. Manar Ahmad, Dr. Mohamad Samy, Dr. Mohamad Hassan el-Far, Dr. Rana Mohamad Youssef** for helping me throughout this study.

Walid Saeed Atyah Zaki

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
Introduction	1
Review of Literature	4
Statement of the Problem	31
Study Objective	32
Materials and Methods	33
Results	69
Discussion	76
Summary	91
Conclusion	94
Recommendations	95
References	96
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Materials and equipment used in the	study 34
Table (2):		40
Table (3):	Descriptive statistics for marginal (µm) of different groups	· -
Table (4):	Effect of different variables and interactions on marginal gap (μm)	
Table (5):	Mean ± standard deviation (SI marginal gap (μm) for different m protocols	nilling
Table (6):	Mean ± standard deviation (SI marginal gap (μm) for different thickn	•
Table (7):	Mean ± standard deviation (SI marginal gap (μm) for different m protocols and laminate thicknesses	illing

List of Figures

Fig. No.	Title	Page No.
Figure (1):	3 spatial directions X, Y and Z (3 milling devices); 3 spatial direction Y, Z and tension bridge A (4 milling devices); 3 spatial direction Y, Z, tension bridge A and milling devices)	as X, axis as X, lling
Figure (2):	Celtra Duo	
Figure (2):	Cerec Omnicam	
Figure (4):	InEos scanner machine	
Figure (5):	Cerec MCXL Milling Machine	
Figure (6):	MCX5 Milling Machine	
Figure (7):	Cylinder pointed 12s MCXL mil	
8 - (1)	bur (Dentsply Sirona, Bensh	O
	Germany). Step 12s MCXL milling	
	(Dentsply Sirona, Bensheim Germa	
Figure (8):	Diamond 1.2-1.4-2.2 MCX5 milling	bur
	(Dentsply Sirona, Bensheim Germa	any).
	Materials and Method	39
Figure (9):	A typodent (NISSIN, Japan)	41
Figure (10):	Silicone putty index	41
Figure (11):	Depth oriented grooves made by depth	
	cutter stone	
Figure (12):	The finished preparation	
Figure (13):	Checking the temporary 0.5mm ver	neer
	thickness	
Figure (14):	Verification of preparation amo	
	using silicon index	
Figure (15):	The three components of epoxy resi	
Figure (16):	Epoxy resin die	
Figure (17):	Administration page for C	
	premium software	46

List of Figures (Cont...)

Fig. No.	Title	Page No.	
Figure (18):	Selection of milling machine usir	_	
	Cerec premium software		16
Figure (19):	Selection of material using the		
	premium software		17
Figure (20):	Administration page for inLab	SW15	
	software	4	17
Figure (21):	Selection of milling machine	using	
	inLab software	4	18
Figure (22):	Scanning page of the Cerec pre	mium	
	software	4	18
Figure (23):	Scanning page of the inLab softwa	are4	19
Figure (24):	Setting the model axis for	$ ext{the}$	
J	abutment using Cerec pre	mium	
	software		50
Figure (25):	Editing the jaw line of the model		
	Cerec premium software	_	50
Figure (26):	Drawing the restoration margin		
8 . ,	Cerec premium software	•	51
Figure (27):	Defining the insertion axis using		
8 . ,	premium software		51
Figure (28):	Restoration parameter setting for		
8 \ -/	mm thickness laminate veneer		
	Cerec premium software	_	52
Figure (29):	Restoration proposal Editing		
g = \ \ ',	Cerec premium software	-	52
Figure (30):	Setting the model axis for		
g = \(\frac{1}{2}\)	abutment using inLab software		53
Figure (31):	Drawing the restoration margin		-
g ()•	inLab software	-	54
Figure (32):	Defining the insertion axis using		_
3 ()•	software		54

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (33):	Restoration parameter setting fo	or 0.7	
	mm thickness laminate veneer	_	
	inLab software		55
Figure (34):	Restoration proposal Editing		
	inLab software		55
Figure (35):	Veneer positioning in the block	_	
	Cerec premium software		56
Figure (36):	Collection of the items that wi	ill be	
	milled using inLab software		57
Figure (37):	Selection of manufacturer, ma	terial	
	and, block size using inLab softwa		58
Figure (38):	Veneer positioning in the block	_	
	inLab software		58
Figure (39):	Starting the production process	using	
	inLab software		59
Figure (40):	Milled Celtra Duo block for	both	
	Fabrication protocols		59
Figure (41):	The polishing kit		60
Figure (42):	(a) Mojo veneer cement, (b) cen	ramic	
	etch, (c) ceramic primer		60
Figure (43):	Hydrofluoric acid etching for	$ ext{the}$	
	veneer fitting		61
Figure (44):	Rinsing of the hydrofluoric acid	etch	
	using oil free water spray		61
Figure (45):	Silane primer application on the fi	itting	
	surface of the veneer		62
Figure (46):	Finger pressure application		62
Figure (47):	Final curing of the veneer		63
Figure (48):	Cemented Veneer on the epoxy die	 .	63
Figure (49):	The gingival margin u	ınder	
_	stereomicroscope of veneer produc	ed by	
	MCXL milling machine.	-	64

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (50):	The incisal margin		
	stereomicroscope of veneer produ	-	
	MCXL milling machine		65
Figure (51):	The mesial margin		
	stereomicroscope of veneer produ	-	
	MCXL milling machine		65
Figure (52):	The distal margin		
	stereomicroscope of veneer produ	-	
	MCXL milling machine		66
Figure (53):	The gingival margin		
	stereomicroscope of veneer produ	-	
	MCX5 milling machine		66
Figure (54):	The incisal margin		
	stereomicroscope of veneer produ	•	
	MCX5 milling machine		67
Figure (55):	The mesial margin		
	stereomicroscope of veneer produ	-	
	MCX5 milling machine		67
Figure (56):	The distal margin		
	stereomicroscope of veneer produ		
	MCX5 milling machine		68
Figure (57):	Box plot showing marginal gap		
	values for different groups		69
Figure (58):	Bar chart showing average ma		
	gap (µm) for different milling pro		71
Figure (59):	Bar chart showing average ma	_	
	gap (µm) for different thicknesse		72
Figure (60):	Bar chart showing average ma	_	
	gap (µm) for different milling pr		
	and laminate thicknesses (A)		75
Figure (61):	Bar chart showing average ma	_	
	gap (µm) for different milling pr		
	and laminate thicknesses (B)		75

Introduction

aminate veneers are now widely used as one of the most conservative treatments for esthetic problems such as discoloration, spacing and tooth malposition. The depth of preparation might vary and that depends mainly on the ceramic material used. The more the material could be milled in thin thickness the more the tooth structure will be preserved.

Ceramic materials have been developed rapidly regarding esthetics and mechanical properties to fulfill the patient and clinician needs. One of newly introduced ceramic materials is zirconia-reinforced lithium silicate glass ceramics that is used in fabrication of single unit restorations such as crowns, onlays, inlays, and laminate veneers. This new design/computer aided aided manufacturing computer (CAD/CAM) glass ceramic is enriched with zirconia grains about 10% by weight. The manufacturer claimed that this newly developed generation has enough edge strength and can be milled in thin thickness without loss of marginal adaptation. Another advantage for this material is that it does not require the post-milling firing process, so decreasing the chair-side time for fabrication and decreasing any marginal gaps that could occur due to heating.

Successful porcelain laminate veneers depend on factors such as mechanical strength, bonding properties¹, and marginal

and internal fit². Fit is measured by the intimate contact between the veneer and the prepared tooth³.

Marginal adaptation, is the distance between the finish line the restoration margin, is considered one of the major affecting the long term prognosis of ceramic restorations⁴.

CAD/CAM technology has become an established fabrication process for dental restorations, especially all ceramic restorations. This technology eliminates the errors that can be found in the conventional methods and hence produce a restoration with better accuracy and marginal fit. Processing devices are different in their milling axes number. Many researchers conducted studies to evaluate if the number of axes would affect the produced restoration fit. The results showed a wide variation, there is also no enough data in the literature regarding this when ultra-thin laminate veneer is an fabricated^{5,6}.

Few studies have investigated the effect of the fabrication method; conventional methods versus computeraided design and computer-aided manufacturing (CAD-CAM) that favored conventional methods⁷.

A new addition to the lithium ceramic family is lithium silicate ceramic with the same basic components but with the new addition of 7.6% germanium dioxide improving properties