

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Prevalence of Parasitic Infections and Related Morbidity in Pediatric Patients on Regular Hemodialysis

Thesis
Submitted for Partial Fulfillment of Master Degree
in Pediatrics

By **Ezzat Ibrahim Omran**

M.B.B.Ch. (2011)
Faculty of Medicine - Ain Shams University

Under Supervision of **Prof. Dr. Ihab Zaki Elhakim**

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Mohammad Abdelmonaem Sharaf

Lecturer of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Ayman Al Ashkar

Lecturer of Parasitology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2021

Acknowledgment

First and foremost, I feel always indebted to Audi, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

I wish to express my deepest thanks and respect for Prolon. Ihab Zaki Elhakim, Professor of Pediatrics, Faculty of Medicine - Ain Shams University, for his valuable supervision, guidance and kind advices throughout this work. I really have the honor to complete this work under his supervision.

I'm very grateful to **Dr. Mohammad Abdelmonaem Sharaf,** Lecturer of Pediatrics, Faculty of Medicine – Ain
Shams University, who saved all efforts in guiding, helping and
supporting me. I greatly appreciate his help and guidance.

Great thanks to **Dr. Ayman Al Ashkar**, Lecturer of Parasitology, Faculty of Medicine - Ain Shams University for his active participation, cooperation and fruitful guidance throughout the whole work specially in the practical part of this thesis.

Last but not least, I can't forget to thank with all appreciation all members of my Family, specially my parents, for their support and encouragement in every step of my life. Also, I would like to thank our patients and healthy volunteers who helped us throughout this work.

🖎 Ezzat Ibrahim Omran

Contents

Subject				Page
List of Abbreviation	ns			I
List of Tables	••••		• • • • • • •	II
List of Figures	••••		• • • • • • •	V
Introduction	••••			1
Aim of the Work.	••••			3
Review of Literat	ure		• • • • • • •	
Chapter (1): Immune	Status	in	Pediatric
Hemodialysis	Patients		• • • • • • •	4
Chapter (2):	Common Para	asitic Infe	ction	s in
Healthy Child	ren and those	on Hemo	dialy	/sis29
Chapter (3):	Role of the Im	ımunity iı	ı Par	asitic
Infections				61
Subjects and Met	hods			70
Results				75
Discussion				97
Conclusion				105
Recommendation	1S			106
Summary	••••			107
References	••••			112
Arabic Summary				

List of Abbreviations

Abb.	Full Term
AGEs	Advanced Glycation Endproducts
APCs	Antigen-Presenting Cells
CAKUT	Congenital Abnormalities of Kidney and Urinary
	Tract
CKD	Chronic Kidney Disease
ELISA	Enzyme-Linked Immunosorbent Assay
ESRD	End stage Renal Disease
HD	Hemodialysis
IPs	Intestinal Parasites
KDIGO	Kidney Disease Improving Global Outcomes
LDL	Low Density Lipoprotein
МНС	Major Histocompatibility Complex
NF-κB	Nuclear Factor κB
PAMP	Pathogen-Associated Molecular Patterns
PDU	Pediatric Hemodialysis Unit
PEW	Protein-Energy Wasting
ROS	Reactive Oxygen Species
SRNS	Steroid-Resistant Nephrotic Syndrome
TNF	Tumour Necrosis Factor

List of Tables

Table No.	Title	Page
Table (1)	Stages of chronic kidney disease	6
Table (2)	Common parasites detected on stool examination	30
Table (3)	Demographic characteristics of both pediatric hemodialysis patients and control group	75
Table (4)	Identified symptoms of parasitic infections in both pediatric hemodialysis patients an control group	76
Table (5)	Comparison between pediatric hemodialysis patients and the control group according to presence of lympadenopathy, organomegaly and exposure to animals	77
Table (6)	Prevalence of intestinal parasitic infections and helminths among both pediatiric hemodialysis patients and control group	78
Table (7)	Comparison between pediatric hemodialysis patients and control group according to seroprevalence of anti-toxoplasma IgM and IgG	80

Table No.	Title	Page
Table (8)	Comparison between pediatric hemodialysis patients positive and negative for parasitic infections according to demographic data (sex and residency)	81
Table (9)	Comparison between pediatric hemodialysis patients positive and negative for parasitic infections according to age and duration of dialysis	82
Table (10)	Identified symptoms of parasitic infections between pediatric hemodialysis patients positive and negative for parasitic infections	83
Table (11)	Comparison between pediatric hemodialysis patients positive and negative for parasitic infections according to presence of lympadenopathy, organomegaly and exposure to animals	84
Table (12)	Comparison between pediatric hemodialysis patients positive and negative for parasitic infections according to CBC with differential	85
Table (13)	Comparison between pediatric hemodialysis patients positive and negative for <i>B. hominis</i> according to residency	86

Table No.	Title	Page
Table (14)	Comparison between pediatric hemodialysis patients positive and negative for <i>B. hominis</i> according to duration of dialysis	86
Table (15)	Identified symptoms of parasitic infections between pediatric hemodialysis patients positive and negative for <i>B. hominis</i> .	87
Table (16)	Comparison between pediatric hemodialysis patients positive and negative for <i>B. hominis</i> according to CBC with differential	88
Table (17)	Comparison between pediatric hemodialysis patients positive and negative for <i>Cryptosporidium</i> parvum according to residency	89
Table (18)	Comparison between pediatric hemodialysis patients positive and negative for <i>cryptosporidium</i> parvum according to duration of dialysis	89
Table (19)	Identified symptoms of parasitic infections between pediatric hemodialysis patients positive and negative for <i>Cryptosporidium</i> parvum	90
Table (20)	Comparison between pediatric hemodialysis patients positive and negative for <i>Cryptosporidium</i> parvum according to CBC with differential	91

Table No.	Title	Page
Table (21)	Comparison between <i>Toxoplasma</i> IgG reactive and non reactive pediatric hemodialysis patients according to age and duration of dialysis	92
Table (22)	Comparison between <i>Toxoplasma</i> IgG reactive and non reactive pediatric hemodialysis patients according to residency	93
Table (23)	Comparison between <i>Toxoplasma</i> IgG reactive and non reactive pediatric hemodialysis patients according to vascular access, lymphadenopathy, organomegaly and animal exposure	94
Table (24)	Comparison between <i>Toxoplasma</i> IgG reactive and non reactive pediatric hemodialysis patients according to CBC with differential	96

List of Figures

Fig. No.	Title				Page		
Figure (1)	The	effect	of	uraemia	on	the	13
	immune system						

Introduction

End-stage renal disease (ESRD) is an immunosuppressive condition that makes patients more prone to infections, including those caused by opportunistic protozoan parasites. Patients undergoing hemodialysis (HD) suffer from humoral and cell-mediated immune defects and have disturbances in acquired immune response to a variety of antigens (*Shehata et al.*, 2019).

Other factors contributing to changes in the immune response of these patients against infectious agents include malnutrition and vitamin deficiencies resulting either from during from inadequate intake or losses dialysis procedures. Also, blood exposure to artificial membranes during hemodialysis leads to chronic production of inflammatory cytokines. This important event in its turn creates the state of activation of monocytes and the complement cascade leading to altered immune response, changes in the coagulation cascade, frequent and repeated episodes of peri-dialysis hypotension, with the activation of leukocytes, lymphocytes, and nitric oxide, platelet dysfunction and anemia causing specific immunological changes (Sela et al., 2005).

Opportunistic parasitic infections, including those with *Cryptosporidium* species, *Cystoisospora belli*, *Cyclospora cayetanensis*, *Blastocystis hominis*,

Toxoplasma gondii and microsporidia, have been documented to cause serious complications or even death among immunocompromised patients, including those undergoing HD (Mohammadi-Manesh et al., 2014).

The investigation of parasitic infections in these patients, followed by any necessary treatment if tested positive, can therefore play an important role in the process of restoring better quality of life for these patients (*Jager et al.*, 2009).

Aim of the Work

The aim of this work was to study the prevalence of common parasitic infections among the hemodialysis pediatric patients at Ain Shams University Pediatric Hemodialysis Unit (PDU).