

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University
Faculty of Engineering
Electronics and Communications Engineering Department

Performance Evaluation of Virtualized Networks to Serve the Smart IoT Applications

A Thesis

Submitted in partial fulfillment of the requirements of a Master of Science Degree in Electrical Engineering (Electronics and Communications Engineering)

Submitted by:

Mohamed Abdellateef Mohamed Eid

Faculty of Engineering, Ain Shams University

Supervised by:

Assoc. Prof. Dr. Hussein Abdel Atty El Sayed

Faculty of Engineering, Ain Shams University

Dr. Michael N. A. Ibrahim

Faculty of Engineering, Ain Shams University

Cairo, 2020

Ain Shams University Faculty of Engineering Electronics and Communications Engineering Department

Performance Evaluation of Virtualized Networks to Serve the Smart IoT Applications

A Thesis

Submitted in partial fulfillment of the requirements of a Master of Science Degree in Electrical Engineering (Electronics and Communications Engineering)

Submitted by:

Mohamed Abdellateef Mohamed Eid

Faculty of Engineering, Ain Shams University, 2020

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Hisham Mohamed Abd Elghafar El Badawi National Telecommunication Institute (NTI) Head of Network Planning Dept.	••••••
Prof. Dr. Salwa Hussein El Ramly Ain Shams University Electronics and Communications Eng. Dept.	
Assoc. Prof. Dr. Hussein Abdel Atty El Sayed Ain Shams University Electronics and Communications Eng. Dept.	

Date: 19 Dec 2020

Ain Shams University Faculty of Engineering Electronics and Communications Engineering Department

Performance Evaluation of Virtualized Networks to Serve the Smart IoT Applications

A Thesis

Submitted in partial fulfillment of the requirements of a Master of Science Degree in Electrical Engineering (Electronics and Communications Engineering)

Submitted by:

Mohamed Abdellateef Mohamed Eid

Faculty of Engineering, Ain Shams University, 2020

Supervisory Committee

Name and Affiliation	Signature	
Assoc. Prof. Dr. Hussein Abdel Atty El Sayed	•••••	
Ain Shams University		
Electronics and Communications Eng. Dept.		
Dr. Michael N.A. Ibrahim	•••••	
Ain Shams University		
Flectronics and Communications Eng. Dent		

Date: 19 Dec 2020

Statement

This dissertation is submitted to Ain Shams University for

the degree of Master of Science in Electrical Engineering

(Electronics and Communications Engineering).

The work included in this thesis was carried out by the au-

thor at the Electronics and Communications Engineering

Department, Faculty of Engineering, Ain Shams University,

Cairo, Egypt.

No part of this thesis was submitted for a degree or a quali-

fication at any other university or institution.

Name: Mohamed Abdellateef Mohamed Eid

Signature:

Date:

6/9/2020

Curriculum Vitae

Name: Mohamed Abdellateef Mohamed Eid

Date of Birth: 9/1/1990

Place of Birth: Cairo, Egypt

First University Degree: B.Sc. in Electrical Engineering

Name of University: Ain Shams University

Date of Degree: June 2012

Acknowledgment

All praise is due to Allah who taught man what he knew. I would like to thank God Almighty for bestowing upon me the chance, strength, and ability to complete this work.

My sincere gratitude goes to my family and my wife. This work would not be possible without their continuous encouragement, patience, support, and assistance.

My words cannot express my gratitude to my advisors Dr. Hussein Abdel Atty who introduced me to the world of electronics and guided me through my research and career to the best.

Dr. Hussein Abdel Atty and Dr. Michael Ibrahim encouraged me to be able to finish this work, with their support, guidance, encouragement, and confidence in me. All of them treated me not just as their student but also as their friend and son.

Mohamed Abdellateef Cairo, Egypt 2020

Abstract

Recently, emerging technologies such as mobile devices and applications, social networks, cloud computing, and big data have experienced explosive growth, and end-users are expecting higher data rates with better quality of services (QoS) year after year.

This thesis gives a brief introduction to the software-defined network (SDN) definition, general concepts, and architecture as technology, then illustrates various mobile network architectures using different technologies. It shows the simulation of these architectures plus real live networks measurement, so in the end, it can propose SDN architecture that can be used to serve multiple applications and technologies. Network simulation models are used to evaluate the performance of the proposed SDN architectures as well as various architectures representing the traditional networking technologies for different scenarios under different conditions.

The simulation results show the improvement of the SDN performance over the other ones. The traditional architectures have been im-

plemented and tested in two mobile operator's production environ-

ments and test labs; and the practical measurements have been com-

pared with the simulation results for its consistency.

This work is considered as SDN proof-of-concept and interopera-

bility with other technologies which is an essential aspect during the

migration to SDN so a hybrid proposed model is simulated to gain

benefits of SDN at the lowest cost keeping part of the traditional net-

work as well.

Keywords: SDN; Open Flow; Open Day light; Cisco SDN; Mininet;

Throughput; Simulated Networks; IoT applications; Performance

Measurements

iii

Contents

A	CKNO	WLEDG	MENT 1	[
A	BSTRA	ACT	II	[
L]	IST OF	FIGUR	ES VIII	[
L	IST OF	TABLE	ZSX	- L
A	BBREV	VIATIO	NSXI	[
1	INTR	ODUCT:	ION1	L
	1.1	Introdu	UCTION	. 1
	1.2	PROBLE	M STATEMENT	. 7
	1.3	Organi	ZATION OF THESIS	. 7
2	SDN (CONCEI	PTS11	
	2.1	Introdu	UCTION	11
	2.2	SDN Ov	/ERVIEW	12
	2.3	SDN DE	EFINITIONS	14
		2.3.1	Layer	15
		2.3.2	Level	16
		2.3.3	SDN controller	16
		2.3.4	Controller plane interface (CPI)	17

		2.3.5	Network element
	2.4	SDN AR	CHITECTURE19
		2.4.1	Data plane21
		2.4.2	Control plane25
		2.4.3	Data plane control function
		2.4.4	Coordinator28
		2.4.5	Agent29
		2.4.6	Application plane30
		2.4.7	Management31
		2.4.8	Virtualization31
		2.4.9	Administration32
		2 / 10	
		2.4.10	ONF protocols
3	RELA		ONF protocols
3		ATED WO	•
	3.1	TED W(ORK33
	3.1 NETV	ATED WO INTRODU	ORK
	3.1 NETV 4.1	TED WO INTRODU VORK SI INTRODU	ORK
	3.1 NETV 4.1 4.2	INTRODU VORK SI INTRODU GNS3 SI	ORK 33 OCTION 33 IMULATION AND DESIGN 37 OCTION 37
	3.1 NETV 4.1 4.2 4.3	INTRODU VORK SI INTRODU GNS3 SI DOCKER	ORK 33 ICTION 33 IMULATION AND DESIGN 37 ICTION 37 MULATOR 38
	3.1 NETV 4.1 4.2 4.3 4.4	INTRODU VORK SI INTRODU GNS3 SI DOCKER CONTA	ORK 33 OCTION 33 IMULATION AND DESIGN 37 OCTION 37 MULATOR 38 CONTAINER 40

	4.7	OPENDA	AYLIGHT	46
	4.8	NETWO	RK MODELS	47
		4.8.1	Network components	48
		4.8.2	Physical Network	52
		4.8.3	Virtual Edge	53
		4.8.4	Virtual core	54
		4.8.5	SDN	54
5	SIMU	LATIO	N RESULTS	56
	5.1	INTROD	UCTION	56
	5.2	SIMULA	TION SCENARIOS	56
	5.3	SOFTWA	ARE SIMULATION RESULTS	58
	5.4	Ркотот	YPE TESTS AND RESULTS	62
	5.5	MOBILE	TELECOM OPERATORS TESTS	63
		5.5.1	Physical lab	64
		5.5.2	NFV lab	67
		5.5.3	Tests Conclusion	69
6	PROP	POSED	SDN/ PHYSICAL NETWORK	HYBRID
M	ODEL	•••••		71
	6.1	Introd	UCTION	71
	6.2	Propos	ED MODEL	71