

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

UTILIZATION OF AGRO WASTES FOR BIODEGRADABLE COMPOSITES FABRICATION AND NANOCELLULOSE ISOLATION

By

Sherif Fathy Ahmed Mehanny

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in Mechanical Design and Production Engineering

UTILIZATION OF AGRO WASTES FOR BIODEGRADABLE COMPOSITES FABRICATION AND NANOCELLULOSE ISOLATION

By **Sherif Fathy Ahmed Mehanny**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Mechanical Design and Production Engineering

Under the Supervision of

Prof. Dr. Abdel-Haleim El- Habbak	Prof. Dr. Emad El-Kashif
Professor of Materials and Manufacturing Mechanical Design and Production Dept. Faculty of Engineering, Cairo University	Professor of Materials and Manufacturing Mechanical Design and Production Dept. Faculty of Engineering, Cairo University

Prof. Dr. Mahmoud Farag

Professor of Materials Mechanical Engineering Dept. School of Science and Engineering, American University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

UTILIZATION OF AGRO WASTES FOR BIODEGRADABLE COMPOSITES FABRICATION AND NANOCELLULOSE ISOLATION

By **Sherif Fathy Ahmed Mehanny**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Mechanical Design and Production Engineering

Approved by the Examining Committee	
Prof. Dr. Abdel-Haleim El-Habbak	Thesis Main Advisor
Prof. Dr. Ehab El-Danaf	Internal Examiner
Prof. Dr. Maha Ibrahim, Cellulose and Paper dent National Res	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Sherif Fathy Ahmed Mehanny

Date of Birth: 07/.02/1986 **Nationality:** Egyptian

E-mail: smehanny@gmail.com

Phone: 01112571389

Address: Zahraa ElHelmia/ Dar ElSerour 27, apt 51

Registration Date: 01/03/2016 **Awarding Date:**/2021

Degree: Doctor of Philosophy

Department: Mechanical Design and Production Engineering

Supervisors:

Prof. Dr. Abdel-Haleim El-Habbak Prof. Dr. Emad Farouk El-Kashif Prof. Dr. Mahmoud Mohamed Farag

Mechanical Engineering dept., American University in Cairo

Examiners:

Prof. Dr. Maha Ibrahim (External examiner)

Cellulose and Paper dept., National Research Center, Dokki, Prof. Dr. Ehab Adel El-Danaf (Internal examiner) Prof. Dr. Abdel-Haleim El-Habbak (Thesis main

advisor)

Title of Thesis:

UTILIZATION OF AGRO WASTES FOR BIODEGRADABLE COMPOSITES FABRICATION AND NANOCELLULOSE ISOLATION

Key Words:

Lignocellulose, Valorization, Composite, Nanocellulose; Acidic Hydrolysis.

Summary:

Four studies were conducted to valorize cellulosic wastes. Study 1 revealed that small ingredient of animal glue in bagasse TPS composite, drastically increased strength from 4 to 20 MPa at low temp. Study 2 yielded that flax TPS composite was the most recalcitrant to biodegradation. Study 3 showed that pulped bleached poplar is good candidate to extract cellulose nanocrystals. Study 4 exhibited that pulped unbleached palm can yield lignin containing spherical nanocellulose. Results depicted in this thesis widen horizon of biowaste valorization to construct versatile materials.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Sherif Fathy Ahmed Mehanny	Date:
Signature:		

Dedication

To the most beloved souls, father and brother (Late General Major Eng. / Fathy Mehanny and Late Colonel Eng. / Ahmed Fathy Mehanny) for their unforgettable love and support.

To my perseverant encouraging affectionate mother Mrs. / Nagwa Fayad.

To my brother Eng. / Amr Fathy Mehanny who continuously provide direction and advice

Acknowledgments

First of all, I would like to thank God for helping me to complete and finish this work after a long series of efforts. I would like to express my appreciation to the worth advice and scientific philosophy of my supervisor Prof. Dr. Abdel-Haleim El-Habbak, Mechanical Design and Production, Cairo University. It is great pleasure also to express my gratitude to my supervisor Prof. Dr. Mahmoud Farag, Mechanical Engineering dept., American University in Cairo for his guidance and encouragement throughout my work. I also owe a debt of gratitude to Dr. Emad El-Kashif, Mechanical Design and Production dept, Cairo University for his scientific and administrative guidance to fulfill this thesis. Significant remarks and corrections in this thesis of Prof. Dr. Ehab El-Danaf, Mechanical Design and Production, Cairo University, contributed to the betterment of this work. I also acknowledge Prof. Dr. Maha Ibrahim and Dr. Ehab E. Abu-El Magd, Cellulose and Paper dept. National Research Center, Cairo, Egypt; for giving me hands on experience in cellulose experiments and facilitating my accessibility to several research facilities. I cannot ignore undeniable role of Prof. Dr. Jorge Navarro and Dr. Rodrigo Millan, Inorganic Chemistry dept., University of Granada, Spain; for helping me with all lab. facilities in Granada, during my doctoral stay in their campus.

Table of Contents

DISCLAIMER	•••••••••••••••••••••••••••••••••••••••	I
DEDICATION		II
ACKNOWLEDGMENTS		III
TABLE OF CONTENTS		IV
LIST OF TABLES		VI
LIST OF FIGURES		VII
ABSTRACT		X
CHAPTER 1: INTRODUCTION	N	1
1.1. Background		1
9		
1.2.2. Biodegradation		4
1.2.3. Biodegradable Composite		4
1.2.4. Biomaterial		8
1.2.5. Biomass		8
1.2.6. Nanomaterials		8
1.3. Significance and scope		12
1.4. Purpose and Objectives		12
1.5. Organization of the Thesis		13
CHAPTER 2 : LITERATURE R	REVIEW	14
2.1. Starch		14
	ffect	
2.2. Lignocellulosic Fibers		17
2.4. Glue and Temperatures Infl	uence on Lignocellulosic Composites	27
2.5. Biodegradation of Lignocell	lulosic Composites	28
2.6. Poplar based Nanocellulose		29
2.7. Unbleached Palm based Nar	nocellulose	30
CHAPTER 3: EXPERIMENTA	L AND METHODS	31
	Design	
	ares Influence on Lignocellulosic Composites	
· · · · · · · · · · · · · · · · · · ·	ignocellulosic Composites	
	ellulose	
3.1.4. Study 4: Unbleached Palm ba	ased Nanocellulose	34

3.2.	Materials	34
3.3.	Preparation	35
3.4.	Characterization	
3.4	.1. Tensile testing	41
	.2. Soil-Burial Biodegradation	
3.4	.3. TEM	43
3.4	.4. SEM analysis	43
3.4	.5. FTIR analysis	43
3.4	.6. XRD analysis	44
3.4	.7. Particle size distribution	44
CHA	PTER 4: RESULTS AND DISCUSSIONS	45
4.1.	Study 1: Glue and Temperatures Influence on Lignocellulosic Composite	es45
4.2.	Study 2: Biodegradation of Lignocellulosic Composites	49
4.3.	Study 3: Poplar based Nanocellulose	53
4.4.	Study 4: Unbleached Palm based Nanocellulose	62
СНА	PTER 5 CONCLUSION AND FUTURE WORK	76
REF	ERENCES	78

List of Tables

Table 1.1: Types of nanomaterials based on their shape and dimensions)
Table 2.1: Physical, chemical, and mechanical properties of lignocellulosic fibers1	19
Table 2.2: Different types on nanocellulose; extraction methods and properties,2	26
Table 3.1: Constituents of bagasse reinforced starch/glue composites	36
Table 4.1: Comparison between results of these study and other biodegradable	
composites	48
Table 4.2: Size distribution (length & width) of cellulose nanocrystals (CNC), sourced	d
1	56
Table 4.3: Literature published in poplar based nanocellulose; cellulose purification,	
nanocellulose extraction, and resultant properties are listed	50
Table 4.5 SEM and TEM image size analysis for three types of palm residues based	
nanocellulose particles6	
Table 4.6: Zeta Potential and Particle Size of particles in this study, measured by malve	
equipment, in comparison to literature	57
Table 4.7: Crystallinity % of native, pulped and hydrolyzed palm residues; namely:	
fronds, leaves, and coir	72
Table 4.8: Nanocellulose extraction methods and properties, with emphasis on palm	
residues	73

List of Figures

Figure 1.1: Classification of composite materials based upon material type	2
Figure 1.2: Classification of compoite materials based upon filler geomtry	3
Figure 1.3: Shapes of composite fillers,	
Figure 1.4: Biodegradation performed by microorganisms enzymes	
Figure 1.5: Types of natural fibers already used as composite reinforcement	
Figure 1.6: Texture of different plant based natural fibers	
Figure 1.7: Compression molding (hot pressing) process	
Figure 1.8: Extrusion process comprising heat and shear stresses	
Figure 1.9: Injection molding process where pressure and heat are applied	
Figure 1.10:Difference between top down and bottom up nanomaterials fabrication.	
Figure 1.11:Different processes to prepare nanomaterials	11
Figure 2.1: The structures of amylose (left) and amylopectin (right)	14
Figure 2.2: Effect of plasticizer content on the glass transition temp	
Figure 2.3: Tensile strength and elongation of starch after 1 day vs. glycerol content	
Figure 2.4: Strain at break (ϵ b) and nominal stress at break (σ h) versus water conten	t
(W)	
Figure 2.5: Schematic illustration of the hierarchical structure of cellulose in wood a	nd
cellulose nanoparticle isolation	
Figure 2.6: structure of natural fiber	18
Figure 2.7: Material selection chart, strength versus stiffness, Ashby method	21
Figure 2.8: Experimental and theoretical strength of natural fibers starch composites	.23
Figure 2.9: Experimental and theoretical moduli of natural fibers starch composite .	23
Figure 2.10:Nanocellulose sourced from the three routes	24
Figure 3.1: Research layout of study 1 (Glue and Temperatures on Composites)	31
Figure 3.2: Research layout of study 2:(Biodegradation of Composites)	32
Figure 3.3: Research layout of study 3 (Poplar based Nanocellulose)	33
Figure 3.4: Research layout of study 4 (Unbleached Palm based Nanocellulose)	34
Figure 3.5: Bagasse wastes after squeezing	34
Figure 3.6: Poplar plant (poplus sp.) in forest region	
Figure 3.7: Starch granules being mixed with glycerin and water forming TPS	37
Figure 3.8: Metal die used to hot press starch based composites	
Figure 3.9 Carver press used to fabricate starch based composites	
Figure 3.10: Starch based lignocellulosic composite hot pressed on Carver press	38
Figure 3.11: Poplar biowates used in nanocellulose extraction	
Figure 3.12 Poplar pulping process on hot plate with stirring rod	
Figure 3.13: Acidic hydrolysis process for bleached poplar yielding nanocellulose	
Figure 3.14: Quenching process cellulose in ice to cease acidic hydrolysis reaction	
Figure 3.15: Tensile test piece for starch based lignocellulosic composite	
Figure 3.16: Tensile test piece (leftwards) and fractured piece on Instron machine	
Figure 3.17: Charac.of nanocellulose; infra-red (leftwards) and XRD (rightwards)	
Figure 4.1: SEM invest. of the starch/glue surface prepared by pressing at 140 °C, .	
Figure 4.2: The fracture surface of starch/glue-based bagasse composite	
Figure 4.3: Effect of temp. and addition of glue on tensile of starch bagasse comp	
Figure 4.4: Effect of temp. and addition of glue on modulus of starch bagasse comp.	
Figure 4.5: Effect of biodegradation on a) strength, and b) modulus of composite	
Figure 4.6: Surface morphology of the prepared 50 wt% fiber content composites	51

Figure 4.7: Surface morphology of the prepared 50 wt% fiber content composites	.52
Figure 4.8: Residual weight versus time for the prepared 50 wt% fiber composite	.53
Figure 4.9: TEM investigation of poplar sourced Cellulose nanocrystals (CNC),	.55
Figure 4.10 TEM investigation of cellulose nanocrystals (CNC) sourced from MCC	55
Figure 4.11: FTIR spectral investigations of Poplar, MCC, & CNC	.57
Figure 4.12 XRD characterization of Poplar, MCC, & CNC	.59
Figure 4.13: SEM illustration of nanocellulose extracted from 3 types of palm	.63
Figure 4.14: SEM for palm coir after acidic hydrolysis;	.64
Figure 4.15: TEM illustration of nanocellulose extracted from 3 types of palm	.65
Figure 4.16 Particle size analysis of fronds nanocellulose A), its zeta potential B)	.67
Figure 4.17: FTIR spectroscopy for the three types of palm residues	.69
Figure 4.18: XRD analysis of three types of palm residues	.71