

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Implication of Autoantibodies in Early Diagnosis and Monitoring of Plasmonic Photothermal Therapy in the Treatment of Feline Mammary Carcinoma

A Thesis Presented by

Asmaa Mohammed Mohammed Mohammed (B. V. M. Sc., Fac. Vet. Med., Cairo University, 2013)

For

The Degree of Master in Veterinary Medical Sciences (Microbiology)

Under supervision of

Prof. Dr. / Salah Eldeen Abdel Kerim Selim

Professor Emeritus of Microbiology

Faculty of Veterinary Medicine

Cairo University

Dr. / Shaymaa Abdel Malek Dr. / Mostafa El-Gaffary

Lecturer of Microbiology Lecturer of Clinical Pathology

Faculty of Veterinary Medicine Faculty of Veterinary Medicine

Cairo University Cairo University

Supervisors

Prof. Dr. Salah Eldeen Abdel Kerim Selim

Professor Emeritus of Microbiology, Faculty of Veterinary Medicine, Cairo University.

Dr. Shaymaa Abdel Malek Mohamed

Lecturer of Microbiology Faculty of Veterinary Medicine, Cairo University.

Dr. Mostafa Ahmed Mostafa Ali El-Gaffary

Lecturer of Clinical Pathology Faculty of Veterinary Medicine, Cairo University.

CAIRO UNIVERSITY

Cairo university Faculty of Veterinary Medicine

Name : Asmaa Mohammed Mohammed.

Nationality: Egyptian. Bate of Birth: 7/June/1991

Scientific Degree: M. V. M. Sc., (Microbiology).

Title of Thesis: The Implication of Autoantibodies in Early

Diagnosis and Monitoring of Plasmonic Photothermal Therapy in the Treatment of

Feline Mammary Carcinoma

Keywords: Autoantibodies, Cancer, Mammary, MYC, MUC-1, P53, PCNA, Plasmonic Photothermal Therapy.

Abstract

Plasmonic Photothermal Therapy (PPTT) is consider an effective localized treatment for pet's mammary carcinoma with a systemic effect. Its systemic effect has not investigated yet and need many studies to hypothesis how the PPTT eradicate tumor cells. In this study, for the first time, we detected (P53, PCNA, MUC-1, and C-MYC) autoantibodies (AAbs) in feline, studied the relationship between PCNA AAbs and mammary tumors, and investigated the effect of PPTT on humoral immune response of cats with mammary carcinoma through detection of AAbs level before, during, and after the treatment. Firstly, a panel of four AAbs (P53, PCNA, MUC-1, and C-MYC) was evaluated in serum of normal cats and cats clinically with Enzyme-Linked diagnosed mammary tumors using Immunosorbent Assay (ELISA). The panel showed 100% specificity and 93.7% sensitivity to mammary tumors (p < 0.05). Secondary, the

CAIRO UNIVERSITY

panel was evaluated in PPTT monotherapy, mastectomy monotherapy, and combination therapy. PPTT monotherapy decreased AAbs level significantly (p < 0.05) while mastectomy monotherapy and combination therapy had no significant effect (p > 0.05) on AAbs level. The cats treated with PPTT monotherapy showed high survival rate (530 ± 0.0 d; n = 9; 67% censored).

Dedication

To My Late Father,
To My Dear Mother,
To My Brother and Sisters.

Acknowledgment

First of all, I would like to express my all-embracing gratitude and praise to ALLA, glorified is he, for his unmitigated support and graceful benevolence in carrying out this humble thesis.

I would like to seize the opportunity to show off my greatest indebtedness and sincere loyalty to my scientific father **Prof. Dr. Salah A. Selim** Professor Emeritus of Microbiology, Mycology and Immunology, Faculty of Veterinary Medicine, Cairo University for his initiating power, effective scientific supervision, continuous encouragement and his generous help. It gives me the greatest honor to work under his supervision.

I shall not forget the highly appreciated advices and most esteemed constructive criticism of **Prof. Dr. Haithem A. M. Farghali** Professor of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University and his great help in clinic part of this thesis. I can never deny his breathtaking touch, which help this thesis come out to light. The yearning of my heart and emotions of my soul are always directed to this great man-professor.

I would like also to express my gratitude to **Dr. Hisham A. Abdelrahman,** lecturer of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University to his great and wonderful efforts in the statistical analysis of the results that guided us to an accurate discussion of the results.

Abdel malek, Lecture of Microbiology, Mycology and Immunology, Faculty of Veterinary Medicine, Cairo University, Dr. Mostafa El- Gaffary Lecture of Clinical Pathology, Faculty of veterinary Medicine, Cairo University and Dr. Kareem Shokry the Teaching Assistant of Microbiology, Mycology and Immunology, Faculty of Veterinary Medicine, Cairo University for their advices, support and help with time and technical practice.

I well will not forget the precious advices and great help of **Prof. Dr. Magdy A. Ghoneim** Professor of Biochemistry, Faculty of Veterinary Medicine, Cairo University.

I wish also to express my grand gratitude to **Prof. Dr Mostafa A. El-Sayed** (Julius Brown Chair and Regents Professor Director, Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA for providing the Gold nanorods (AuNRs) and the diode laser used in the present work.

List of content

Chapter	Content	Page
1.	Introduction.	1
2.	Review of literature.	15
2.1	Humoral immune response in mammary	15
	tumor.	
2.2	The role of antibodies in early diagnosis of	18
	mammary tumor.	
2.3	The role of antibodies in mammary tumor	21
	prognosis/follow up.	
2.4	The role of antibodies in protection against	22
	mammary tumor.	
2.5	Protumor roles of tumor-infiltrating B-cells	24
	and intratumourally produced antibodies.	
2.6	Tumor associated antigens (TAAs) and their	25
	autoantibodies (AAbs).	
2.6.1	MUC-1	26
2.6.2	MYC "myelocytomatosis oncogene"	28
2.6.3	PCNA	30
2.6.4	P53	33
3.	Published articles.	35
3.1	The Humoral Immune Response of Feline	35
	Mammary Tumor.	
3.2	The Implication of Autoantibodies in Early	46
	Diagnosis and Monitoring of Plasmonic	
(under	Photothermal Therapy in the Treatment of	
publication)	Feline Mammary Carcinoma.	
4.	Discussion.	90

CAIRO UNIVERSITY

5.	Conclusion.	105
6.	Summery.	107
7.	References.	109
8.	Appendix.	129

List of Tables

No.	Title	Page
1	Cat groups included in the study.	83
2	Mean \pm standard error (SE) of AAbs values measured for normal cats ($n = 6$) and cats diagnosed with mammary tumor ($n = 32$).	84
3	Optimal cut-off values of the four studied AAbs and their corresponding for sensitivity (%), specificity (%), negative likelihood ratio (LR-), and Youden's index (YI).	85
4	Comparison between AAbs values measured before treatment (first) and after treatment (last). Significant results at $p < 0.05$ if (bold).	86
5	Comparison between AAbs values (predictive and predictive) before appearance of secondary tumors and metastasis.	87-88
6	Comparison between AAbs values (predictive and predictive) before appearance of recurrent tumors.	89

List of figures

No.	Title	Page
1	Effect of metastasis on survival probabilities of cats with mammary tumors	78
2	Effect of treatment on survival probabilities of cats with mammary tumors	79
3	Distribution of the measured values of the four AAbs	80
4	Comparison of receiver operating characteristic (ROC) curves of four different AAbs in mammary tumor detection	81
5	Measured and predictive values of P53 in a cat with a mammary tumor	82
Diagram 1	Distribution of the 4 AAbs values in 32 cats with mammary tumors and 6 clinically normal cats (control negative)	94
Diagram 2	Composite diagram of the four markers sensitivity, specificity and AUC	95
Diagram 3	Distribution of the 4 AAbs values in 6 control negative cats and 5 apparently healthy cats in early tumorigenesis	97
Diagram 4	Measured and predicted values of P53 in a cat with mammary tumor	102

List of Abbreviations

AAbs	Autoantibodies
AuNRs	Gold Nano Rods
AUC	Area Under the Curve
BC	Breast Cancer
BRCA	Breast Cancer Antigen
CA15.3	Cancer Antigen 15.3
ECM	Extra Cellular Matrix
FMT	Feline Mammary Tumor
HBC	Human breast carcinoma
HER2	Human Epidermal Receptors
HSP	Heat Shock Proteins
ICD	Immunogenic Cell Death
IGFBP-2	insulin-like growth factor binding protein 2
NIR	Near Infra-Red
NY-ESO-1	Cancer testis antigens
PCNA	Proliferating cell nuclear antigen antibodies
PPTT	Plasmonic Photo Thermal Therapy
ROC	Receiver Operating Characteristic
TAAs	Tumor Associated Antigens
ΤΟΡΟ2α	Topoisomerase II alpha