

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

OPTIMIZING DATA RATE OVER HYBRID FSO/MMWAVE LINK IN HIGH ALTITUDE C-RAN MOBILE NETWORK ARHITECTURE

By

Nagwa Ibrahim Mohammed Attya

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Electrical Communication Engineering

OPTIMIZING DATA RATE OVER HYBRID FSO/MMWAVE LINK IN HIGH ALTITUUDE C-RAN MOBILE NETWORK ARCHITECTURE

By Nagwa Ibrahim Mohammed Attya

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Electronics and Electrical Communication Engineering

Under the Supervision of

Prof. Dr. Ashraf A. M. Eltholth

Emeritus Professor
Electronics and Electrical Communication
Faculty of Engineering, Cairo University

Prof. Dr. Ashraf A. M. Eltholth

Associate Professor
Transmission Department
National Telecommunication Institute, Egypt

OPTIMIZING DATA RATE OVER HYBRID FSO/MMWAVE LINK IN HIGH ALTITUUDE C-RAN MOBILE NETWORK ARCHITECTURE

By Nagwa Ibrahim Mohammed Attya

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Electronics and Electrical Communication Engineering

Approved by the
Examining Committee

Prof. Dr. Magdy M. S. El-Soudani, Thesis Main Advisor

Prof. Dr. Ashraf A. M. Eltholth,
- Associate Professor at National Telecommunication Institute, Egypt

Prof. Dr. Yasmin A. Fahmy, Internal Examiner

Prof. Dr. Hesham M. A. El-Badawy, External Examiner
- Professor at National Telecommunication Institute, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Nagwa Ibrahim Mohamed Attya

Date of Birth: 11/9/1990 **Nationality:** Egyptian

E-mail: nagwa.ibrahim@nti.sci.eg

Phone: 01025935530

Address: Shubhra, Cairo, Egypt

Registration Date: 1/3/2015 **Awarding Date:** //2021

Degree: (Master of Science)

Department: Electronics and Electrical Communication Engineering

Supervisors:

Prof. Magdy M. S. El-Soudani Prof. Ashraf A. M. Eltholth

Examiners:

Prof. Magdy M. S, El-Soudani (Thesis main advisor)

Prof. Ashraf A. M. Eltholth (Advisor)

- Associate Professor at NTI

Prof. Yasmin A. Fahmy (Internal examiner)
Prof. Hesham M. A. El-Badawy (External examiner)

- Professor at NTI

Title of Thesis:

Optimizing data rate over Hybrid FSO/mmWave Link in High Altitude C-RAN Mobile Network Architecture

Key Words:

Free Space Optics; Millimeter Wave; Cloud Radio Access Network; Integral Linear Programming Optimization; High Altitude Balloon

Summary:

In this thesis, a C-RAN architecture where a hybrid transmission technology FSO/mmWave channel is used to transport the fronthaul between the RRHs and the cloud of BBUs.

The reason behind this assumption is to control the hand over between FSO and mmWave channels in case of failure as a result of weather conditions. To achieve a maximum sum data rate in this C-RAN architecture, we optimize hand over process using ILP programming.

Simulations show the potential of a hybrid FSO/mmWave channel in counteracting the effects of weather conditions. The model can be modified to consider the case where both FSO and mmWave channels are used concurrently to achieve a certain data rate for a particular case.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Nagwa Ibrahim Mohamed Attya Date: / /2021

Signature:

Dedication

The researchers would like to dedicate this research study to their families who supported them to conduct this research study, for the teachers who help and guide them to make a final output and for the future researchers who can use this study as their guide or reference

Acknowledgments

First of All, I need to thank and praise Allah Subhana Wa Tallah who granted me the health and the knowledge to finish this work.

Secondly, I would like to express my deepest gratitude to my supervisors Prof. Dr. Magdy El-Soudani, and Prof. Dr. Ashraf Eltholth associate professor at National Telecomunication Institute, for their continuous support, extreme patience, valuable guidance and encouragement that led to complete this work.

Nagwa Ibraim

Table of Contents

Li	st of	Tables	vi
Li	st of	Figures	vii
N	omer	nclature	х
\mathbf{A}	bstra	ct	xiv
1	Intr	roduction	1
	1.1	Mobile Communication Evolution	1
	1.2	Future Wireless Network Requirements	3
	1.3	Base Station Architecture Evolution	3
		1.3.1 Traditional Architecture	5
		1.3.2 Base Station with RRH Architecture	6
		1.3.3 Centralized Base Station with RRH Architecture	6
	1.4	Cloud Radio Access Network (C-RAN)	7
		1.4.1 Advantages of C-RAN Architecture	8
		1.4.2 Green Deployment Scenarios of C-RAN	9
	1.5	Future Aerial Communication Networks	10
		1.5.1 Classification of ACNs	11
	1.6	Related Work	13
	1.7	Thesis Contribution	13
	1.8	Thesis Organization	14
2	Free	e Space Optics and mmWave Wireless Communications	15
	2.1	Free Space Optics (FSO)	15
		2.1.1 Attenuation in FSO Channel	16
		2.1.1.1 Geometric Losses	16
		2.1.1.2 Scintillation Loss	17
		2.1.1.3 Atmospheric Losses	18
		2.1.2 Link Margin in FSO Channel	25
	2.2	Millimeter Wave (mmWave)	26
		2.2.1 Attenuation in mmWave	26
		2.2.1.1 Free Space Path Loss (FSPL)	26
		2.2.1.2 Molecules Absorption	28
		2.2.1.3 Scintillation Loss	29
		2.2.1.4 Atmospheric Losses	30
	2.3	Hybrid FSO/mmWave channel	35
3	Dat	a Rates over FSO and mmWave Links	36
	3.1	Received Signal Power	36
	3.2	Data Rate over FSO Channel	37
	3.3	Data Rate over mmWaye Channel	37

	6.2	Future Work	72		
	6.1	Conclusion	70		
6	Conclusion and Future Work		7 0		
	5.9	Sum Data Rate with FSPL and Scintillation in Rainy Weather	69		
	5.8	Sum Data Rate with FSPL and Scintillation in Dusty Weather	66		
	5.7	Sum Data Rate with FSPL and Scintillation loss in Foggy Weather	63		
	5.6	Sum Data Rate in Rainy Weather	61		
	5.5	Sum Data Rate in Dusty Weather	60		
	5.4	Sum Data Rate with Scintillation Loss	59		
	5.3	Sum Data Rate in Foggy Weather	58		
	5.2	Sum Data Rate in Clear Weather	57		
	5.1	Case Study of Vertical Front Hauling C-RAN	54		
5	Cas	e Study and Simulation Results	5 4		
		4.3.2 ILP Flowchart	5.		
		4.3.1 ILP Formulation Problem	50		
	4.3	Maximizing Data Rate in C-RAN Using ILP Optimization Method	49		
	4.2	Integral Linear Programming (ILP)	48		
	4.1	Vertical Front-haul C-RAN Architecture	46		
	Pro	blem	46		
4	Vertical Front Hauling C-RAN Model and ILP Optimization				
		Conditions	38		

List of Tables

1.1	Summary of aerial communication network	12
2.1	Scintillation fade depth exceeded for 1 km depth	17
2.2	Scattering categories	19
2.3	Fog models	21
2.4	Rain attenuation parameters value	22
2.5	parameters for snow attenuation	23
2.6	Dust attenuation in FSO at different visibility values	24
2.7	Scintillation fade depth exceeded for 1 km depth	29
2.8	Calculation of different types of attenuation over FSO and mmWave	
	channels	34
3.1	Simulation parameters using FSO and mmWave channels	38
4.1	Parameters and variables of the ILP optimization problem	50
5.1	AUC for Sum Data Rate under Different Weather Conditions	62
5.2	AUC for Sum Data Rate with Scintillation Turbulence in Foggy	
	Weather	65
5.3	AUC for Sum Data Rate with Scintillation Turbulence in Dusty	
	Weather	68
5.4	AUC for Sum Data Rate with Scintillation Turbulence in Rainy	
	Weather	69

List of Figures

1.1	Cellular technology development over the year	2
1.2	Progression of optical transport network	ç
1.3	Future Wireless Communication Network Requirements	4
1.4	Base Station Architecture Evolution	4
1.5	Traditional base station	Ę
1.6	Base station Architecture with RRH	6
1.7	Centralized Base station with RRH Architecture	7
1.8	Cloud Radio Access Network	7
1.9	Mobile Network in C-RAN	8
1.10	RRH and BBU distribution Scenarios of C-RAN	Ć
1.11	Graphical Illustration of Layered Architecture where ACNs of Various	
	Types and Flying at Different Altitudes in a swarm of Flying Platforms	1
2.1	Free Space Optics channel	16
2.2	Scintillation loss for FSO according to distance at various wavelengths	
	980 nm and 1550 nm	18
2.3	Attenuation for different models in fog weather condition at different	
	wavelengths	2
2.4	Atmospheric Attenuation due to rain fall	22
2.5	Atmospheric attenuation at wet and dry snow	23
2.6	Atmospheric attenuation under dust and fog weather conditions over	
	FSO channel	24
2.7	FSPL versus transmission distance for mmWave channel under clear	
	air at different frequencies	27
2.8	Attenuation due to absorption of molecules in mmWave channel	28
2.9	Scintillation loss for mmWave according to distance for various turbu-	
	lence at $60GHz$ and $40GHz$	29
2.10	Atmospheric attenuation under fog weather for mmWave channel at	
	different values of frequencies	3.
	Rain attenuation for different rainfall rate	32
2.12	Atmospheric attenuation under dust and fog weather conditions for	
	mmWave channel with different values of visibility at 100GHz	33
3.1	Data rates in <i>clear weather</i> conditions versus the distance from HAB	
	to the ground (a) over FSO channel (b) over mmWave channel	39
3.2	Data rate at different degree of scintillation turbulence versus the	
	distance from HAB to the ground (a) over FSO channel (b) over	
	mmWave channel	36
3.3	Data rates in <i>foggy weather</i> at different degree of visibility versus	
	the distance from HAB to the ground (a) over FSO channel (b) over	
	mmWave channel	40

3.4	Data rates in <i>dusty weather</i> at different degrees of visibility versus the distance from HAB to the ground (a) over FSO channel (b) over	
3.5	mmWave channel	41
	the distance from HAB to the ground (a) over FSO channel (b) over mmWave channel	41
3.6	Data rates with <i>FSPL</i> versus the distance from HAB to the ground (a) over FSO channel and (b) over mmWave channel	42
3.7	Data rates with FSPL in moderate scintillation turbulence and foggy weather at different degrees of visibility versus the distance from HAB to the ground (a) over FSO channel (b) over mmWave channel	43
3.8	Data rates with FSPL in moderate scintillation turbulence and dusty weather at different degrees of visibility versus the distance from HAB	49
3.9	to the ground (a) over FSO channel (b) over mmWave channel Data rates with FSPL in moderate scintillation turbulence and rainy weather at different degrees of rain rates versus the distance from	43
	HAB to the ground (a) over FSO channel (b) over mmWave channel	44
4.1	Graphical illustration of proposed hybrid FSO/mmWave channel in C-RAN architecture	47
4.2	Vertical frant-haul proposed model	49
4.3 4.4	Proposed Flowchart for switching between FSO and mmWave channels The state machine for hybrid FSO/mmWave channel	52 53
5.1	Port Said city	55
5.2	Hypothetical Cellular network in Port Said city where 24 RRHs are used with (a) One HAB, (b) Five HABs, and (c) Ten HABs	56
5.3	Normalized sum data rate in clear weather for different number of HABs (a) over FSO channel (b) over mmWave channel	57
5.4	Normalized sum data rate in <i>clear</i> weather for different number of HABs over FSO, mmWave, and hybrid channels in the 24 RRHs	
5.5	network	57
	degrees for different number of HABs (a) over FSO channel (b) over mmWave channel	58
5.6	Normalized sum data rate in moderate fog for different number of HABs over FSO, mmWave, and hybrid channels in the 24 RRHs network	58
5.7	Normalized sum data rate at different degrees of scintillation turbulence for different number of HABs (a) over FSO channel (b) over	90
	mmWave channel	59
5.8	Normalized sum data rate in <i>moderate scintillation turbulence</i> for different number of HABs over FSO, mmWave, and hybrid channels	
F 0	in the 24 RRHs network	59
5.9	Normalized sum data rate in dusty weather at different visibility degrees for different number of HABs (a) over FSO channel (b) over	
	mmWave channel	60