

Impact of Oral Nicorandil Intake on Incidence of Acute Kidney Injury in Diabetic Patients with Renal dysfunction Undergoing Elective Percutaneous Coronary Intervention

A Thesis

Submitted In Partial Fulfillment of the Requirement of Master Degree in Cardiology

By

Mahmoud Mohamed Rabea

M.B.B.Ch. Cairo University

Supervised by

Prof. Dr. Walaa Adel Abdel Halim

Professor of Cardiology Faculty of Medicine - Ain Shams University

Prof. Dr. Mohamed Abdel Samie

Associate Professor of cardiology Faculty of medicine -Ain Shams University

Prof. Dr. Ashraf Salem Ibrahim

Associate Professor of cardiology Military Medical Academy

Faculty of medicine - Ain Shams University 2020

سورة البقرة الآية: ٣٢

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really, I can hardly find the words to express my gratitude **Prof. Dr. Walaa Adel,** Professor of Cardiology Faculty of Medicine - Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Mohamed Abdel Samie**, Associate Professor of cardiology Faculty of medicine-Ain Shams University, for his continuous directions and support throughout the whole work.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Ashraf Salem Ibrahim**, Associate Professor of cardiology Military Medical Academy, for his continuous directions and support throughout the whole work.

Mahmoud Mohamed Rabea

List of Contents

Title Page N	Vo.
List of Tables	iv
List of Figures	v
Introduction	1
Aim of Work	4
Review of Literature	
• Acute Kidney Injury in Elective Pci	5
• Pevention of Contrast-Induced Acute Ki	dney Inhury19
Diabetic Nephropathy	35
• Nicorandil in Ischemic Heart Disease	54
Subjects and Methods	69
Results	78
Discussion	98
Conclusion	111
Recommendation	112
Summary	113
References	115
Master Sheet	153
Arabic Summary	168

List of abbreviations

PCI : Percutaneous coronary angiography : CI-AKI : Contrast-induced acute kidney injury

CHF : Congestive heart failureCKD : Chronic Kidney Disease

MDRD : Modification of diet in renal disease

ROS : Reactive oxygen species

CIN : Contrast-induced nephropathy

ATP : Adenosine triphosphate

NO : Nitric oxide

DM : Diabetes mellitus

IABP : Intra-aortic balloon pumb

eGFR : estimated glomerular filtration rate

HOCM : High-osmolar contrast media
LOCM : Low-osmolar contrast media
IOCM : Iso-osmolar contrast media

AKI : acute kidney injury

ESC : European society of cardiology
AHA : American heart association
RCT : randomized controlled trial

EBP : extracorporeal blood purificationIDF : International diabetes federationADA : American diabetes association

WHO : world health organizationGDM : gestational diabetes mellitusHIV : Human immunodeficiency virus

AIDS :Acquired immune deficiency syndrome

FPG : fasting plasma glucoseESRD : End-stage renal diseaseDKD : Diabetic kidney disease

Cr : Creatinine

s. Cr : Serum creatinine

ACE : Angiotensin converting enzyme

ischemic heart diseaseglobal burden of disease

voltage sensitive calcium channel
 ROC : Receptor operated calcium channel
 MLCP : Myosin light chain phosphatase

BK Channel: Big potassium channel

PKG : cGMP dependent protein kinase

IP3 : inositol triphosphate

mPTP : mitochondrial permeability transition pore

ATP : adenosine triphosphate

PKC: protein kinase C

ROC : Receptor operated calcium channel

List of Tables

Tab. No.	Title	Page No.
Table (1): M	Mehran Risk SCORE	121
Table (2): V	VBH Risk SCORE	123
Table (3): Id	odinated contrast media in clinical practice	18
Table (4): P	otential pharmacological Prophylactic Agents	30
Table (5): E	SSC 2018 guidelines on prevention of CI-AKI	34
Table (6): S	taging of diabetic nephropathy	47
Table (7):	level of evidence explanation	53
Table (8): C	Comparison between nicorandil group and con	trol55
Table (9): C	Comparison between nicorandil group and con	trol79
Table (10):	Comparison between nicorandil group and co	ntrol82
Table (11):	Comparison between nicorandil group and co	ntrol60
Table (12):	Comparison between nicorandil group and co	ntrol61
Table (13):	Comparison between nicorandil group and co	ntrol63
Table (14):	Comparison between nicorandil group and co	ntrol64
Table (15):	Comparison between pre-procedural data	65
Table (16):	Comparison after 10 days and after 72 hours.	68

List of Figures

Fig.	No.	Title	Page No.
Figu	re (1):	The mechanisms by which radiographic contrast	t15
Figu	re (2):	Different pathways and networks involved	45
Figu	re (3):	Normal and diabetic nephron with altered renal	46
Figu	re (4):	N- (2-hydroxyethyl) nicotinamide nitrate (ester))56
Figu	re (5):	Possible function of ATP-sensitive potassium	59
Figu	re (6):	Possible functions of nitric oxide (NO) in arteri	al60
Figu	re (7):	Nicorandil-induced signaling pathway in ischae	mic65
Figu	re (8):	Adverse reactions considered to be related	68
Figu	re (9):	Gender regarding nicorandil group and control.	79
Figu	re (10)): Risk factors regarding nicorandil group and co	ontrol81
Figu	re (11)	: LVDV, LVSV and EF regarding nicorandil gr	oup83
Figu	re (12)): No. stented vessels regarding nicorandil group	86
Figu	re (13)): Worst lesion type regarding nicorandil group	87
Figu	re (14)): Serum cretanin regarding nicorandil group	89
Figu	re (15)	eGFR and BUN regarding nicorandil group	91
Figu	re (16)	: Creatinine pre and after 72 hours	93
Figu	re (1 7)): BUN pre and after 72 hours	93
Figu	re (18)	: K pre and after 72 hours	94
Figu	re (19)	eGFR pre and after 72 hours	94
Figu	re (20)	: Creatinine after 72 hours and after 10 days	96
Figu	re (21)	BUN after 72 hours and after 10 days	96
Figu	re (22)	: K after 72 hours and after 10 days	97
Figu	re (23)	eGFR after 72 hours and after 10 days	97

Introduction

INTRODUCTION

Contrast-induced acute kidney injury (CI-AKI) is a serious and prevalent side effect of the administration of iodine contrast medium after Coronary angiography or Percutaneous Coronary Intervention procedures.

The European Society of Urogenital Radiology defines contrast-induced acute kidney injury as any of the following (**Kellum J. et al., 2012**):

- Increase in Serum creatinine by more than or equal 0.3 mg/dl within 48 hours.
- Increase in serum creatinine to more than or equal to 1.5 times baseline, which is known or presumed to have occurred within the prior 7 days
- Urine volume less than 0.5 ml/kg/h for 6 hours

CI-AKI incidence ranges from 2-5% in the general population to 50% in high-risk patients (**Cheungpasitporn et al., 2014**).

The risk factors for CI-AKI include diabetes mellitus (which is associated with increased risk even in patients with preserved renal function), congestive heart failure (CHF), age > 75, hypertension, hypotension, decreased renal perfusion, female gender, high-osmolar contrast, contrast volume, urgent versus planned PCI and most importantly, chronic kidney disease (CKD) (Mehran R et al., 2004).