

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Cairo University Faculty of Veterinary Medicine Department of Parasitology

Advanced studies on the integrated control of the native hard tick strain in Egypt

A Thesis submitted by

Hoda Shaaban Mohamed Abdel-Ghany

(BVSc, Benha University, 2010; MVSc, Cairo University, 2016)

For the Degree of Ph.D.

(Parasitology)

Under supervision of

Dr. Magdy Mostafa Fahmy

Professor of Parasitology,
Faculty of Veterinary Medicine,
Cairo University.

Dr. Mai Abuowarda Mohamed

Assistant Professor of Parasitology, Faculty of Veterinary Medicine, Cairo University.

Dr. Sobhy Abd El-Shafy Hassan

Professor and Head of Parasitology

Department, Veterinary Research Division,

National Research Centre.

Cairo University Faculty of Veterinary Medicine Department of Parasitology

Approval Sheet

This is to approve the dissertation presented by Hoda Shaaban Mohamed Abdel-Ghany to the Faculty of Veterinary Medicine, Cairo University for the degree of Ph.D. in Veterinary Science (Parasitology) has been approved by the examining committee

Committee

Dr. Nadia Mohamed Talaat Abu El-Ezz

Nadia Mohamed talaat

Professor of Parasitology National Research Centre

Dr. Hussein Mohamed Mohamed Omar

Professor of Parasitology
Faculty of Veterinary Medicine
Cairo University

Dr. Magdy Mostafa Fahmy

Professor of Parasitology Faculty of Veterinary Medicine Cairo University

Dr. Mai Abowarda MohamedAssistant professor of Parasitology
Faculty of Veterinary Medicine
Cairo University

ott.

M. Abuowarda

My fahung

Date: 1/4/2021

Cairo University Faculty of Veterinary Medicine Department of Parasitology

Supervision Sheet

Dr. Magdy Mostafa Fahmy

Professor of Parasitology,
Faculty of Veterinary Medicine,
Cairo University.

Dr. Mai Abuowarda Mohamed

Assistant Professor of Parasitology, Faculty of Veterinary Medicine, Cairo University.

Dr. Sobhy Abd El-Shafy Hassan

Professor and Head of Parasitology

Department, Veterinary Research Division,

National Research Centre.

Cairo University

Faculty of Veterinary Medicine

Department of Parasitology

Name :Hoda Shaaban Mohamed Abdel-Ghany.

Nationality :Egyptian.

Date of birth :November12th, 1987.

ScientificDegree :Ph.D. in Veterinary Medical Sciences.

Specification : Parasitology.

Title of Thesis :Advanced studies on the integrated control of the

native hard tick strain in Egypt.

Supervisors:

1. Dr. Magdy Mostafa Fahmy

Professor of Parasitology, Faculty of Veterinary Medicine, Cairo University

2. Dr. Mai Abuowarda Mohamed

Ass. Professor of Parasitology, Faculty of Veterinary Medicine, Cairo University

3. Dr. Sobhy Abd El-Shafy Hassan

Professor and Head of Parasitology Department, Veterinary Research Division, National Research Centre

ABSTRACT

Tick control mostly depends on the use of chemical acaricides which resulted in the development of resistance and environmental pollution. Therefore, there is a need to discover eco-friendly alternatives for these chemicals. This study was designed to evaluate the acaricidal activity of some natural products and synthesized nanomaterials on different developmental stages of the camel tick Hyalomma dromedarii (H. dromedarii) and compared with reference acaricide Butox®5%. Petroleum ether and ethyl alcohol extracts of Melia azedarach (Zinzalikht) ripened fruits and Artemisia herba-alba (Sheih) whole aerial parts were prepared. Nickel oxide (NiO) and zinc oxide (ZnO) nanoparticles (NPs) were prepared using an aqueous extract of Melia azedarach ripened fruits, then characterized by UV- visible spectroscopy, Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energydispersive X-Ray spectroscopy (EDS). A. herba-alba and M. azedarach oil loaded nano-emulsions prepared and characterized by were

transmission electron microscopy (TEM) and Fourier Transforms Infrared Spectroscopy (FTIR). Egg, nymph, larva, and adult immersion tests were used for bioassay of tick stages. Mortality percentages and lethal concentration (LC) values of each tick stage were calculated. The egg productive index (EPI), egg number, and hatchability percentage of the engorged females that survived after treatment were calculated. A toxicity test was performed on the Swiss albino mice to evaluate the possible toxic effects of the prepared nanomaterials. The UV-Vis spectra of the NiO NPs showed an absorption peak at 307 nm and ZnO NPs at 377nm. FTIR analysis showed the possible functional groups used for capping and stabilization of NiO and ZnO NPs. The SEM images of the NiO NPs exhibited a size ranging from 21 to 35 nm and ZnO NPs 18 to 42 nm. TEM characterization revealed spherical droplets for A. herba-alba and M. azedarach oil loaded nano-emulsion with droplet size ranged from 62 to 69 nm and 52-91nm, respectively. FTIR revealed the absence of extra peaks in the loaded nano-emulsions that confirmed no chemical changes existed by ultrasonication. The calculated LC_{50} confirmed that M. azedarach had slightly higher toxicity on the dormant stages (embryonated eggs and engorged nymphs) than A. herbaalba. The LC₅₀ values confirmed that the petroleum ether extracts were more toxic against the active stages (larvae, unfed adults, and engorged females) of H. dromedarii than the ethyl alcohol extracts of the two tested plants. Moreover, the petroleum ether extract of A. herba-alba was more toxic than M. azedarach against all active stages. The petroleum ether extract of A. herba-alba was more toxic against larvae followed by unfed adults and then engorged females. The LC₅₀ values for NiO NPs on embryonated eggs, larvae, and engorged nymphs were 5.00, 7.15, and 1.90 mg/ml, respectively. The LC₅₀ values for ZnO NPs on embryonated eggs, larvae, and engorged nymphs were 11.6 mg/ml, 8.03 mg/ml, and 3.9 mg/ml, respectively. The egg productive index (EPI), egg number, and hatchability percentage were lower in females treated with the NiO and ZnO NPs than control ticks. The LC₅₀ values of A. herba-alba and M. azedarach oil loaded nano-emulsion on embryonated eggs, larvae, engorged nymphs, and unfed adults were 0.29% and 1.10%, 0.718% and 1.72%, 0.325% and 0.38%, 4.38%, and 22.24%, respectively. In the NiO NPs toxicity test, the hematological analysis showed a significant increase in the level of WBCs and Hb while the biochemical analysis showed insignificant decrease in ALP and ALT. ZnO NPs toxicity results revealed insignificant changes in the hematological and biochemical parameters. A. herba-alba and M. azedarach oil loaded nanoemulsion toxicity results revealed insignificant changes in the hematological and biochemical parameters.

Keywords: *Hyalomma dromedarii*, Acaricidal activity, *Artemisia herba-alba*, *Melia azedarach*, Nanoparticles, Nano-emulsion, Toxicity.

Dedication

I dedicate this study to my
late father, my Husband, my
Sons and all my family who
have taught me endless
things in life and encouraged
me to complete my study
whom I am indebted to them
for happiness in my life.

Acknowledgements

First of all, I would like to express my deepest gratitude and thanks to "God" for his greatest help to accomplish this study.

I am greatly indebted to **Dr. Magdy Mostafa Fahmy**, Professor of Parasitology, Faculty of Veterinary Medicine, Cairo University for his sponsor deep concern, moral support, and his guidance through the course of study. He has kindly oriented me and continuously followed up and processed the revealed data in all stages of this work.

I would like to express my sincere thanks and gratefulness to **Dr. Mai**Abuowarda Mohamed, Assistant professor of Parasitology Faculty of

Veterinary Medicine, Cairo University, to whom the author feels greatly

indebted for her stimulating guidance, constructive criticism, and valuable

suggestion and encouragement through this work.

I wish to express my deepest thanks and sincere gratitude to **Dr. Sobhy**Abd El-Shafy Hassan, Professor of Parasitology, Dept. of Parasitology and animal diseases, Veterinary Division, National Research Centre for his kind supervision, keen interest, indispensable advice, enthusiasm in reading and criticizing the manuscript and valuable suggestions during the entire period. Under his guidance, I successfully overcame many difficulties and learned a lot. Thanks for everything!

I would like to express deep thank to **Dr. Rabab Mohamed El-Khateeb** Professor of Parasitology, National Research Centre for her kind moral support, valuable suggestion, and support throughout the work.

I have, no words can express my cordial thanks and deep gratitude to **Dr. Essam Mohamed Hoballah** (God rest his soul), Professor of Agriculture Microbiology, National Research Centre for his kind help, valuable advice, painstaking criticism, and a keen interest in the progress of the work.

I would like to express my thanks to all staff members, colleagues, and workmen in the Department of Parasitology and Animal Diseases., National Research Centre and Faculty of Veterinary Medicine, Cairo University for their continuous encouragement throughout the study.

Table of Contents

Chapter 1: Introduction	l
Chapter 2: Review of Literature	6
2.1. Economic importance of ixodid ticks	6
2.2. Acaricidal effect of medicinal plants	7
2.3. Characterization of nanoparticles	17
2.4. Pesticidal effects of synthesized nanoparticles	19
2.5. Acaricidal effects of nano-emulsion	24
2.6. Toxicity of nanoparticles	25
Chapter 3: Published Papers	29
3.1. The first paper	29
3.2. The second paper	45
3.3. The third paper	58
Chapter 4: Submitted Papers	82
4.1. The first submitted paper	82
4.2. The second submitted paper	1233
Chapter 5: Discussion	168
Chapter 6: Conclusions and Recommendations	183
Chapter 7: Summary	186
Chapter 8: References	194
عربية	الملخص باللغة ال

List of Tables

No.	Title	Page
Chapter3.1		
Table (1)	Mortality percentages (Mean±SE) of <i>Hyalomma</i> dromedarii eggs treated with petroleum ether and ethyl alcohol extracts of <i>Melia azedarach</i> and <i>Artemisia herba-alba</i> .	32
Table (2)	LC ₅₀ and LC ₉₉ values with their confidence limits for <i>Hyalomma dromedarii</i> eggs treated with petroleum ether and ethyl alcohol extracts of <i>Melia azedarach</i> and <i>Artemisia herba-alba</i> .	33
Table (3)	Mortality percentages (Mean±SE) of <i>Hyalomma dromedarii</i> nymphs treated with petroleum ether and ethyl alcohol extracts of <i>Melia azedarach</i> and <i>Artemisia herba-alba</i> .	36
Table (4)	LC ₅₀ and LC ₉₉ values with their confidence limits for <i>Hyalomma dromedarii</i> nymphs treated with petroleum ether and ethyl alcohol extracts of <i>Melia azedarach</i> and <i>Artemisia herba-alba</i> .	36
Chapter 3.2		
Table (1)	Gas chromatography-mass spectrometry of petroleum ether extract of <i>Melia azedarach</i> using library	49
Table (2)	Gas chromatography-mass spectrometry of petroleum ether extract of <i>Artemisia herba-alba</i> using library.	49
Table (3)	Mortality percentages (mean ± SE) of <i>Hyalomma</i> dromedarii larvae treated with petroleum ether and ethyl alcohol extracts of <i>Melia azedarach</i> and <i>Artemisia herba-alba</i> at 24 h post treatment.	49
Table (4)	Mortality percentages (mean±SE) of <i>Hyalomma</i> dromedarii unfed adults treated with petroleum ether and ethyl alcohol extracts of <i>Melia azedarach</i> and <i>Artemisia herba-alba</i> at 3 days post treatment.	50

List of Tables (Continued)

No.	Title	Page
Table (5)	Mortality percentages (mean±SE) of Hyalomma	50
	dromedarii females treated with petroleum ether and	
	ethyl alcohol extracts of Melia azedarach and Artemisia	
	herba-alba.	
Table (6)	Reproductive performance of Hyalomma dromedarii	51
	females treated with petroleum ether and ethyl alcohol	
	extracts of Melia azedarach.	
Table (7)	Reproductive performance of Hyalomma dromedarii	51
	females treated with petroleum ether and ethyl alcohol	
	extracts of Artemisia herba-alba.	
Chapter 3	3	
Table (1)	Acaricidal activity of synthesized nickel oxide	69
, ,	nanoparticles (NiO NPs) against embryonated eggs,	
	larvae, and engorged nymphs of Hyalomma dromedarii.	
Table (2)	Reproductive performance of Hyalomma dromedarii	70
	females treated with synthesized nickel oxide	
	nanoparticles (NiO NPs).	
Table (3)	Hematological data of the mice administered five times	71
	oral dose of 500 mg/kg NiO NPs for 5 consecutive days.	
Table (4)	Biochemical analysis of serum collected from mice	72
	administered five times oral dose of 500 mg/kg NiO	
	NPs for 5 consecutive days.	
Chapter 4.1		
Table (1)	Acaricidal efficacy of zinc oxide nanoparticles against	116
	embryonated eggs, larvae, and engorged nymphs of	
	Hyalomma dromedarii.	
Table (2)	Reproductive performance of Hyalomma dromedarii	117
	engorged females treated with zinc oxide nanoparticles.	
Table (3)	Hematological data of the mice administered five times	118
	oral dose of 844 mg/kg zinc oxide nanoparticles for 5	
	successive days.	
Table (4)	Biochemical analysis of serum collected from mice	118
	administered five times oral dose of 844 mg/kg zinc	

List of Tables (Continued)

No.	Title	Page
Chapter 4.2		
Table (1)	Mortality percentages (Mean±SE) of Hyalomma	154
	dromedarii eggs treated with A. herba-alba and M.	
	azedarach oil loaded nano-emulsion.	
Table (2)	Mortality percentages (Mean±SE) of Hyalomma	155
	dromedarii larvae treated with A. herba-alba and M.	
	azedarach oil loaded nano-emulsion on the 24 h post-	
	treatment.	
Table (3)	Mortality percentages (Mean±SE) of Hyalomma	156
	dromedarii nymphs treated with A. herba-alba and M.	
	azedarach oil loaded nano-emulsion.	
Table (4)	Mortality percentages (Mean±SE) of Hyalomma	157
	dromedarii unfed adults treated with A. herba-alba and	
	M. azedarach oil loaded nano-emulsion on the 3rd day	
	post-treatment.	
Table (5)	Reproductive performance of Hyalomma dromedarii	158
	females treated with A. herba-alba and M. azedarach oil	
	loaded nano-emulsion.	
Table (6)	Hematological data of the mice administered for 5	159
	consecutive days with A. herba-alba and M. azedarach	
	oil loaded nano-emulsion.	
Table (7)	Biochemical analysis of the mice administered for 5	160
	consecutive days with A. herba-alba and M. azedarach	
	oil loaded nano-emulsion.	

List of Figures

No.	Caption	Page
Chapter3.1		
Figure (1)	Light micrograph of normal and treated <i>H. dromedarii</i>	34
	eggs with plant extracts.	
Figure (2)	SEM of normal larvae and deformed larvae hatched	35
	from H. dromedarii eggs exposed to plant extracts.	
Figure (3)	Light micrographs of <i>H. dromedarii</i> nymphs treated by	37
	plant extracts and the adults molted from normal and	
	treated nymphs.	
Figure (4)	SEM of normal adults emerged from untreated H.	38
	dromedarii nymphs (control) and abnormal adults	
	emerged from treated <i>H. dromedarii</i> nymphs.	
Figure (5)	SEM of male and female mouth parts of <i>H. dromedarii</i>	39
Figure (6)	SEM of normal adults emerged from untreated H.	40
	dromedarii nymphs (control) and abnormal H.	
	dromedarii adults emerged from treated nymphs	
Chapter 3.2		
Figure (1)	Lethal concentrations of 50% (LC ₅₀) for larvae, unfed	52
	adults, and engorged females of H. dromedarii treated	
	with plant extracts prepared from M. azedarach and A.	
	herba-alba	
Figure (2)	Cross-sections of semifed females of H. dromedarii	53
	treated with four plant extracts	
Chapter3.3		
Figure (1)	UV-visible spectroscopic analysis of synthesized NiO	66
	NPs with a peak at (307 nm)	
Figure (2)	FTIR spectrum of synthesized NiO NPs.	66
Figure (3)	Electron microscopic image of synthesized NiO NPs. (a-	68
	b) SEM of NiO NPs. (c) EDS.	
Figure (4)	Histopathological changes in the liver of mice treated	72
	with NiO NPs.	
Figure (5)	Histopathological changes in the kidney of mice treated	72
	with NiO NPs.	