

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

COMPARATIVE STUDY ON PRODUCTION METHODS OF POROUS HYDROXYAPATITE

By

Sondos Ibrahim Soliman Eissa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

COMPARATIVE STUDY ON PRODUCTION METHODS OF POROUS HYDROXYAPATITE

By Sondos Ibrahim Soliman Eissa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Chemical Engineering

Under the Supervision of

Prof. Dr. Shakinaz Ali-Elden El-Sherbiny

Professor of Chemical Engineering Chemical Engineering Department Faculty of Engineering, Cairo University Ass. Prof. Dr. Hanan Hasssan Abo- Almaged

Assistant Professor of Refractories, Ceramics & Building Materials Department National Research Centre (NRC)

COMPARATIVE STUDY ON PRODUCTION METHODS OF POROUS HYDROXYAPATITE

By Sondos Ibrahim Soliman Eissa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Shakinaz A. El-Sherbiny, Thesis Main Advisor Alacking?
Faculty of Engineering, Cairo University

Prof. Dr. Magdi F. Abadir, Internal Examiner Faculty of Engineering, Cairo University

Prof. Dr. Wa'el H. Hegazy, External Examiner

Professor of Inorganic Chemistry, Faculty of Science, Suez University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Sondos Ibrahim Soliman Eissa

Date of Birth:09/07/1988Nationality:Egyptian

E-mail: 3whitefowers@gmail.com

Phone: 01100170034

Address: 131- Saker Qurish-New Maadi-Cairo

Registration Date:1 / 10 / 2015Awarding Date:.... / / 2021Degree:Master of ScienceDepartment:Chemical Engineering

Supervisors:

Prof. Shakinaz Ali-Elden El-Sherbiny Ass. Prof. Hanan Hassan Abo- Almaged

(National Research Centre)

Examiners: Prof. **Shakinaz A. El-Sherbiny** (Thesis main advisor)

Prof. **Magdi F. Abadir** (Internal examiner) Prof. **Wa'el H. Hegazy** (External examiner)

Faculty of Science, Suez University

Title of Thesis:

Comparative Study on Production Methods of Porous Hydroxyapatite

Key Words:

Porous ceramics; Hydroxyapatite; Starch consolidation casting; Direct coagulation casting; Freeze gel casting

Summary:

Hydroxyapatite is one of the famous calcium phosphate bioceramics. In latest years, porous HA has attracted more attention due to its low density, high porosity, high specific area, and high bioactivity. Hydroxyapatite powder was synthesized and characterized using XRD, IR, TEM, SEM and both (TGA & DTG). Fabrication of hydroxyapatite into porous samples was carried out by three different casting methods (starch consolidation, direct coagulation and freeze gel casting methods) with three different HA powder contents and fired at three different firing temperatures. Porosity, density and mechanical compression strength were measured for all porous hydroxyapatite samples. All porous hydroxyapatite samples were characterized by XRD. SEM was used to study the microstructure of some selected porous HA samples. As a result of this work, pure hydroxyapatite powder was successively prepared by wet precipitation method. The results concluded that porous HA samples prepared by freeze gel casting method showed higher mechanical strength (50.2 MPa) and thermal stability until 1200 °C than those prepared by other methods.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Sondos Ibrahim Soliman Eissa	Date:
Signature:	

Acknowledgments

My deep gratefulness, thankful as to the merciful "Allah" who gave me everything I have as well as the ability and patience for accomplishing this work.

I am really thankful to our professor **Dr. Magdi F. Abadir,** Faculty of Engineering, Cairo University for providing me the idea of this work during the course of ceramics giving me great interest in the subject of bioceramics and their relation to the health and welfare of the human being.

I would like to express my deep appreciation and gratefulness to my kind supervisor **Dr. Shakinaz Ali-Elden El-Sherbiny**, Professor of Chemical Engineering at Cairo University for her continues encouragement and strong support. It has been truly a privilege to study under her supervision.

I wish to express my great gratitude to my supervisor **Dr. Hanan Hasssan Abo-Almaged** Assistant Professor of Refractories, Ceramics and Building Materials at National Research Centre for her guidance and continues cooperation, arranging and following up all stages as well as writing, reading and revising of the thesis up to its final form. She kindly provided me long time, great effort, valuable scientific advices and many practical facilities to accomplish this work.

I wish to express my special thanks to **Dr. Reham Khattab**, Assistant Professor of Refractories, Ceramics and Building Materials at National Research Centre for her great contribution and assistance to accomplish this work. She provided me major parts of the chemicals and facilities in addition to her scientific help.

Although the words are not enough, I can only express my very profound gratitude to my dear lovely parents (**Dr.Somayah Sloiman Eissa and Dr. Ibrahim Soliman Eissa** (may Allah have mercy on him)) for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

In particular, this thesis could not have been accomplished without the support of my kind bothers: (**Dr. Mohammed Ibrahim and Ammar Ibrahim**) and my lovely sisters: (**Eng. Sara Ibrahim and Dr. Sedrah Ibrahim**), their encouragement when the times got rough are much appreciated and duly noted.

Finally, my thanks go to all the people who have supported me to complete the research work directly or indirectly.

My heartfelt thanks
Eng. Sondos Ibrahim Soliman
20/12/2020

Table of Contents

DISC	CLAIMER	i
ACK	NOWLEDGMENTS	ii
TAE	BLE OF CONTENTS	iii
LIST	Γ OF FIGURES	vi
LIST	Γ OF TABLES	ix
LIST	OF ABBREVIATIONS	XII
ABS	TRACT	XIIi
CH	APTER 1: INTRODUCTION	1
1.1. 1.2. 1.3.	INTRODUCTIONAIM OF THE PRESENT WORKTHESIS ORGANIZATION	2
CH	APTER 2: LITERATURE REVIEW	3
2.1. 2.2.	BIOMATERIALS	
2.2.1	BIOINERT CERAMICS	5
2.2.2	BIOACTIVE CERAMICS	5
2.3.2.4.2.5.	CALCIUM PHOSPHATESHYDROXYAPATITEPREPARATION OF HYDROXYAPATITE POWDER	6
2.5.1	.WET CHEMICAL PRECIPITATION METHOD	8
2.6.	POROUS CERAMICS	9
2.6.1	.CLASSIFICATION OF POROUS CERAMICS	9
2.6.2	.CHARACTERISTICS AND APPLICATIONS OF POROUS CERAMICS	10
2.6.3	.FABRICATION METHODS OF POROUS CERAMICS	11
2.6.3	.1.STARCH CONSOLIDATION CASTING METHOD (SCC)	11
2.6.3	.2.DIRECT COAGULATION CASTING METHOD (DCC)	13
2.6.3	.3.FREEZE GEL CASTING METHOD (FGC)	17
2.6.3	.3.1.GEL CASTING METHOD	17
2.6.3	.3.2.Freeze Casting Method	17
2.6.3	.3.3.Freeze Gel Casting Method	18

CHAPTE	ER 3: EXPERIMENTAL WORK	.21
3.1. MA	TERIALS	.22
	EPARATION OF HYDROXYAPATITE POWDER	
	BRICATION OF POROUS HYDROXYAPATITE	
	RCH CONSOLIDATION CASTING METHOD (SCC)	
	CT COAGULATION CASTING METHOD (DCC)	
	ZE GEL CASTING METHOD (FGC)	
3.4. CH	ARACTERIZATION TECHNIQUES	.31
3.4.1.X-RA	AY DIFFRACTION ANALYSIS (XRD)	.31
	RIER TRANSFORMATION INFRA-RED SPECTROSCOPIC ANALY	
3.4.3.THEF	RMAL ANALYSIS (TGA AND DTG)	.31
3.4.4.TRAN	NSMISSION ELECTRON MICROSCOPE (TEM)	.31
3.4.5. SCA	NNING ELECTRON MICROSCOPE (SEM)	.32
3.4.6. PHY	SICAL PROPERTIES	.32
3.4.7.COM	PRESSIVE STRENGTH (CS)	.32
СНАРТЕ	ER 4: RESULTS AND DISCUSSION	.33
4.1. CH	ARACTERIZATION OF HYDROXYAPATITE POWDER	.33
4.1.1.CRYS	STALLINE PHASE ANALYSIS OF HA POWDER (XRD)	.33
4.1.2.FUNG	CTIONAL GROUP ANALYSIS OF HA POWDER (FTIR)	.34
4.1.3.THEF	RMAL ANALYSIS OF HA POWDER (TGA & DTG)	.35
4.1.4.TRAN	NSMISSION ELECTRON MICROSCOPE OF HA POWDER (TEM)	.36
4.1.5.SCAN	NNING ELECTRON MICROSCOPE OF HA POWDER (SEM)	.37
	ARACTERIZATION OF POROUS HYDROXYAPATITE SAMPLES	
	RACTERIZATION OF POROUS HYDROXYAPATITE PREPARED B	
	D PHASE COMPOSITION	
	ARENT POROSITY AND BULK DENSITY	
	APRESSIVE STRENGTH	
	ROSTRUCTURE	
	RACTERIZATION OF POROUS HYDROXYAPATITE PREPARED B OAGULATION CASTING METHOD	
	D Phase Composition	50

ARABIC SUMMARY	أأ
REFERENCES	76
CHAPTER 5: CONCLUSION	74
4.2.3.4.MICROSTRUCTURE	64
4.2.3.3. Compressive Strength	64
4.2.3.2.APPARENT POROSITY AND BULK DENSITY	62
4.2.3.1.XRD PHASE COMPOSITION	59
4.2.3.CHARACTERIZATION OF POROUS HYDROXYAPATITE PREF FREEZE GEL CASTING METHOD	
4.2.2.4.Microstructure	55
4.2.2.3.Compressive Strength	54
4.2.2.2.APPARENT POROSITY AND BULK DENSITY	53

List of Figures

Figure (2.1): Examples of Biomaterials and Their Applications	.4
Figure (2.2): Unit Cell of Hexagonal Hydroxyapatite	
Figure (2.3): Different Methods for the Preparation of Hydroxyapatite	.7
Figure (2.4): Classification of Porous Ceramics and Their Typical Applications1	
Figure (2.5): Urea/Urease Enzyme Catalyzed pH Shifting Reaction1	5
Figure (2.6): Freeze Gel Casting Steps (using HA and TBA as Examples of a Ceramic	
Powder and Solvent Respectively)1	
Figure (2.7): Schematic Illustration of Freeze Gelcasting from Top to Down	
Figure (2.8): Schematic Illustration of Freeze Gelcasting from Down to Top2	
Figure (3.1): Flow Diagram of the Work Plan of the Present Study2	21
Figure (3.2): Flow Chart for the Synthesis of HA Powder using Wet Precipitation	
Method	
Figure (3.3): Flow Chart for Casting of Porous HA using Starch Consolidation Casting Method2	_
Figure (3.4): Flow Chart for Casting of Porous HA using Direct Coagulation Casting	.0
Method2	2
Figure (3.5): Flow Chart for Casting of Porous HA using Freeze Gel Casting Method 2	
Figure (4.1):XRD Pattern for HA Powder Prepared by Wet Precipitation	
Method	
Figure (4.2):FTIR Pattern for HA Powder Prepared by Wet Precipitation Method	
Figure (4.3):TGA and DTG Curves for HA Powder Prepared by Wet Precipitation	
Method3	5
Figure (4.4): TEM Image for HA Powder Prepared by Wet Precipitation Method3	36
Figure (4.5): SEM Image for HA Powder Prepared by Wet Precipitation Method3	37
Figure (4.6): XRD Patterns of Porous HA Samples (HS60) Prepared by Starch	
Consolidation Casting Method and Fired at 1000, 1100 and 1200 °C	38
Figure (4.7): XRD Patterns of Porous HA Samples (HS55) Prepared by Starch	
Consolidation Casting Method and Fired at 1000, 1100 and 1200 °C	38
Figure (4.8): XRD Patterns of Porous HA Samples (HS50) Prepared by Starch	
Consolidation Casting Method and Fired at 1000, 1100 and 1200 °C3	39
Figure (4.9): Apparent Porosity of Porous HA Samples (HS60, HS55 And HS50)	
Prepared by Starch Consolidation Casting Method and Fired at 1000, 1100 and 1200 °	
4	
Figure (4.10): Bulk Density of Porous HA Samples (HS60, HS55 And HS50) Prepared	
by Starch Consolidation Casting Method and Fired at 1000, 1100 and 1200 °C4	₽1
Figure (4.11): SEM Micrographs of Porous HA Sample (HS60) Prepared by Starch	
Consolidation Casting Method and Fired at 1000 °C	13
Figure (4.12): SEM Micrographs of Porous HA Sample (HS55) Prepared by Starch	
Consolidation Casting Method and Fired at 1000 °C	1 4
Figure (4.13): SEM Micrographs of Porous HA Sample (HS50) Prepared by Starch	1
Consolidation Casting Method and Fired at 1000 °C	Ŋ
Figure (4.14): SEM Micrographs of Porous HA Sample (HS60) Prepared by Starch	17
Consolidation Casting Method and Fired at 1100 °C4	ł /

Figure (4.15): SEM Micrographs of Porous HA Sample (HS55) Prepared by Starch
Consolidation Casting Method and Fired at 1100 °C48
Figure (4.16): SEM Micrographs of Porous HA Sample (HS50) Prepared by Starch
Consolidation Casting Method and Fired at 1100 °C
Figure (4.17): XRD Patterns of Porous HA Samples (HD70) Prepared by Direct
Coagulation Casting Method and Fired at 1000, 1100 and 1200 °C50
Figure (4.18): XRD Patterns of Porous HA Samples (HD65) Prepared by Direct
Coagulation Casting Method and Fired at 1000, 1100 and 1200 °C51
Figure (4.19): XRD Patterns of Porous HA Samples (HD60) Prepared by Direct
Coagulation Casting Method and Fired at 1000, 1100 and 1200 °C52
Figure (4.20): A Schematic Representation of Surface Protonation of Apatites at
Different pH52
Figure (4.21): Apparent Porosity of Porous HA Samples (HD70, HD65 and HD60)
Prepared by Direct Coagulation Casting Method and Fired at 1000, 1100 and 1200
°C53
Figure (4.22): Bulk Density of Porous HA Samples (HD70, HD65 and HD60) Prepared
by Direct Coagulation Casting Method and Fired at 1000, 1100 and 1200 °C54
Figure (4.23): SEM Micrographs of Porous HA Sample (HD70) Prepared by Direct
Coagulation Casting Method and Fired at 1000 °C56
Figure (4.24): SEM Micrographs of Porous HA Sample (HD65) Prepared by Direct
Coagulation Casting Method and Fired at 1100 °C57
Figure (4.25): SEM Micrographs of Porous HA Sample (HD60) Prepared by Direct
Coagulation Casting Method and Fired at 1000 °C58
Figure (4.26): XRD Patterns of Porous HA Samples (HF60) Prepared by Freeze Gel
Casting Method and Fired at 1000, 1100 and 1200 °C59
Figure (4.27): XRD Patterns of Porous HA Samples (HF55) Prepared by Freeze Gel
Casting Method and Fired at 1000, 1100 and 1200 °C60
Figure (4.28): XRD Patterns of Porous HA Samples (HF50) Prepared by Freeze Gel
Casting Method and Fired at 1000, 1100 and 1200 °C
Figure (4.29): Formation of Polymer-Solvent Solid Gel61
Figure (4.30): Mechanism of Gel Formation Represented by Schematic
Drawing61
Figure (4.31): Apparent Porosity of Porous HA Samples (HF60, HF55 and HF50)
Prepared by Freeze Gel Casting Method and Fired at 1000, 1100 and 1200 °C62
Figure (4.32): Bulk Density of Porous HA Samples (HF60, HF55 and HF50) Prepared
by Freeze Gel Casting Method and Fired at 1000, 1100 and 1200 °C
Figure (4.33): SEM Micrographs of Porous HA Sample (HF60) Prepared by Freeze Gel
Casting Method and Fired at 1000 °C
Figure (4.34): SEM Micrographs of Porous HA Sample (HF55) Prepared by Freeze Gel
Casting Method and Fired at 1000 °C
Figure (4.35): SEM Micrographs of Porous HA Sample (HF50) Prepared by Freeze Gel
Casting Method and Fired at 1000 °C
Figure (4.36): SEM Micrographs of Porous HA Sample (HF60) Prepared by Freeze Gel
Casting Method and Fired at 1100 °C
Figure (4.37): SEM Micrographs of Porous HA Sample (HF55) Prepared by Freeze Gel
Casting Method and Fired at 1100 °C
Figure (4.38): SEM Micrographs of Porous HA Sample (HF50) Prepared by Freeze Gel
Casting Method and Fired at 1100 °C70 Figure (4.39): SEM Micrographs of Porous HA Sample (HF60) Prepared by Freeze Gel
Casting Method and Fired at 1200 °C71
Cashing Michigu and Phicu at 1200 C/1

Figure (4.40): SEM Micrographs of Porous HA Sample (HF55) Prepared by Freeze	Gel
Casting Method and Fired at 1200 °C.	72
Figure (4.41): SEM Micrographs of Porous HA Sample (HF50) Prepared by Freeze	Gel
Casting Method and Fired at 1200 °C.	73