

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

COMPARISON BETWEEN FINITE ELEMENT AND DIFFERENT CODES FOR DETERMINING THE CAPACITY OF COMPOSITE BEAM COLUMN

By

Mohammed Ali Ibrahim Ali Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

COMPARISON BETWEEN FINITE ELEMENT AND DIFFERENT CODES FOR DETERMINING THE CAPACITY OF COMPOSITE BEAM COLUMN

By Mohammed Ali Ibrahim Ali Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Shiref Ahmed Mourad,

Professor of Steel Structures Structural Engineering Department Faculty of Engineering, Cairo University Prof. Dr. Mohamed Massoud El Sadaawy

Professor of Steel Structures Structures and Metallic Constructions in HBRC

COMPARISON BETWEEN FINITE ELEMENT AND DIFFERENT CODES FOR DETERMINING THE CAPACITY OF COMPOSITE BEAM COLUMN

By Mohammed Ali Ibrahim Ali Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Sherif Ahmed Mourad

(Thesis main advisor)

Prof. Dr. Mohamed Massoud El Sadaawy (Thesis advisor)

Professor of Steel Structures in Building and Housing National Research
Center, Research Institute of Structures and Metallic Constructions

Prof. Dr. Hesham Sobhy khedr

(Internal examiner)

Prof. Dr. Maged Tawfick Hanna (External examiner)
Professor of Steel Structures in Building and Housing National Research
Center, Research Institute of Structures and Metallic Constructions

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 Engineer's Name: Mohammed Ali Ibrahim Ali Mohammed

Date of Birth: 14/09/1990 **Nationality:** Egyptian

E-mail: eng.m.ali.nassar@gmail.com

Phone: +20 - 0112 176 9990

Address: 10 Street Al-Azhr, Haram, Giza - Egypt

Registration Date:1/10/2016Awarding Date:..../..../2021Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Shiref Ahmed Mourad

Prof. Dr. Mohamed Massoud El Sadaawy

Professor of Steel Structures in Building and Housing

National Research Center

Examiners:

Prof. Dr. Shiref Ahmed Mourad (Thesis main advisor)

Prof. Dr. Mohamed Massoud El Sadaawy (advisor) Professor of Steel Structures in Building and Housing

National Research Center

Prof. Dr. Hesham Sobhy Khder (Internal examiner)
Prof. Dr. Maged Tawfik Hana (External examiner)
Professor of Steel Structures in Building and Housing

National Research Center

Title of Thesis:

Comparison Between Finite Element and Different Codes for Determining the Capacity of Composite Beam Column

Key Words:

Composite Column; Concrete Encased; Interaction Diagram; Steel-Core Area

Summary:

The thesis presents an analytical investigation of the flexural and compression load capacity of the composite columns from a steel section encased with reinforced concrete, by using the finite element theory that was applied to different models of the columns under study where several variables were studied such as the area of the longitudinal reinforcement bars and the area of the steel core section, and a comparison of different codes results using the reaction diagram.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Ali	lbrahim Ali Mohamed	Date: -	//

Signature:

Dedication

To my parents and my sisters with love

Acknowledgments

I am grateful to my parents who are always behind me for the success. I would not have achieved this work without their help.

I would like to express my sincere gratitude to my advisors Prof. Dr. Shiref Ahmed Mourad and Prof. Dr. Mohamed Massoud El Sadaawy for their guidance, support, encouragement, valuable discussions, and review during the course of this work, and great efforts to accomplish the thesis objectives.

Table of Contents

LIST OF TABLES	VI
LIST OF FIGURES	VII
LIST OF SYMBOLS	X
ABSTRACT	XIII
CHAPTER 1: INTRODUCTION	1
1.1. General	1
1.2. Problem statement	2
1.3. Objective and Scope	
1.4. Thesis organization	
CHAPTER 2: LITERATURE REVIEW	4
2.1. General.	4
2.2. Design Codes	4
2.3. Research Works	8
CHAPTER 3: FINITE ELEMENT MODEL AND VERIFICATION	21
3.1. General	21
3.2. Finite Element Program	21
3.3. Element Type	22
3.3.1. concrete element	22
3.3.2. Steel plates element	23
3.3.3. Reinforcement Element	23
3.4. Non-linear Behavior in Ansys Program	24
3.5. Material Properties	24
3.5.1. Stress-Strain Curve	24
3.6. Model Geometry	27

3.7. Applied Loads and Failure Criteria	
3.8. Non-liner Solution.	
3.9. Analysis type	35
3.10. Model Verification.	35
3.10.1. Finite Element Verification	35
3.10.2 Spreadsheet Program Verification	36
CHAPTER 4: PARAMETRIC STUDY	38
4.1. General	38
4.2. Interaction Diagram	38
4.3. Encased Column Design Programs	41
4.4. Design of Encased Composite Column in The International Codes	44
4.4.1. Introduction	44
4.4.2. Effect of Limitations using interaction diagrams	44
4.4.2.1. Comparison of Composite Columns Using Different Codes	44
4.4.2.2. Behavior of composite columns with constant longitudinal steel bars (A _{sb}) using finite element curves	61
4.4.2.3. Behavior of composite columns with constant steel core (A _{sc}) using finite element curves	64
4.4.2.4.Behavior of composite columns with a fixed increase 1% in each steel area (A_{sb}) and (A_{sc}) to comparison between of reinforcement bar and steel section using finite element curves	68
4.4.2.5. Factor of Safety	71
4.5. Suggest New Curve.	73
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	74
5.1. Summary	74
5.2. Conclusion	74
5.3. Recommendations for Future Research	75
REFERENCES	76

List of Tables

Table 3.1: Element Materials	24
Table 3.2: Details od Models Characteristics	29
Table 3.3: Non-linear Analysis Control Commands	35
Table 4.1: Table 4.1: ratio-differ for group A	46
Table 4.2: Table 4.1: ratio-differ for group B	48
Table 4.3: Table 4.1: ratio-differ for group D	51
Table 4.4: Table 4.1: ratio-differ for group E	53
Table 4.5: Table 4.1: ratio-differ for group F	56
Table 4.6: Table 4.1: ratio-differ for group G	58
Table 4.7: Percentage increase in axial capacity and flexural difference in	
interaction diagram axes, with constant reinforcement longitudinal bars	61
Table 4.8: Percentage increase in axial capacity and flexural difference in	
interaction diagram axes, with constant steel core section	64
Table 4.9: compares between area increase in steel core and longitudinal	
reinforcement bars area with same area ratio +1%	68

List of Figures

Figure 1.1: Cross-Sectional of composite column
Figure 2.1: Calculate the plastic capacities encased shapes about strong axis
Figure 2.2: Cross section of composite column
Figure 2.3: Rectangular and circular cross sections and properties
Figure 2.4: Interaction curve for circular column diameter 230 mm
Figure 2.5: Interaction curve about the strong axis at different moments of fire
exposure for partially & totally encased steel sections
Figure 2.6: The new cross-section studied
Figure 2.7: Cross section for (FCSCs) & (FCCCs)
Figure 2.8: Parts for unconfined, partially confined, and highly confined concrete
in several composite cross sections
Figure 2.9: Cross section for composite polygonal tubular columns with reference
to loading
Figure 2.10: Variation of load versus moment interaction curves
Figure 2.11: Comparison of three different design codes for composite columns
Figure 3.1: Finite element of composite column
Figure 3.2: Finite element of cross section of composite column
Figure 3.3: Solid 65 3-D reinforced concrete solid ansys 19
Figure 3.4: Solid 45 3-D solid ansys 19
Figure 3.5: Link 180 ansys 19
Figure 3.6: Stress-strain curve for steel material
Figure 3.7: Stress-strain curve for concrete material
Figure 3.8: Multi-linear isotropic stress-strain curve for the concrete
Figure 3.9: The geometrical characteristics of specimens
Figure 3.10: The geometrical & buckling mode of studies cases
Figure 3.11: Element connectivity: (a) Concrete solid and link elements (b)
Concrete solid and steel solid elements
Figure 3.12: Loading system and Dimensions (mm)
Figure 3.13: Point at interaction diagram
Figure 3.14: Applied Load case one at point A
Figure 3.15: Applied Load case one at point B
Figure 3.16: Applied Load case one at point C
Figure 3.17: Applied Load case one at point D
Figure 3.18: Deformed shape finite element
Figure 3.19: Cross section for specimen of M. Magdy Abdel Wahab
Figure 3.20: Comparison between interaction diagram of our F.E model and M.
Magdy experimental model
Figure 3.21: Comparison of interaction diagram Aisc-2010 & Aisc-2016 between
the Spreadsheet Program (Ultimate Length)
Figure 3.22: Comparison of interaction diagram Aisc-2010 & Aisc-2016 between
the Spreadsheet Program (Length Effect)
Figure 4.1: Simplified determination of the interaction curve and stress
distributions

Figure 4.2: Stress Distribution for max. capacity of cross section for point A, B,	40
D, & B	40 41
Figure 4.4: Spreadsheet program for composite column name G-6.99-1.93 (1/2)	42
Figure 4.5: Spreadsheet program for composite column name G-6.99-1.93 (1/2)	42
	43
Figure 4.6: Comparison between expected interaction diagram for column A-	16
2.05-0.97 and interaction diagram by codes.	46
Figure 4.7: Comparison between expected interaction diagram for column A-	4.7
2.06-1.23 and interaction diagram by codes	47
Figure 4.8: Comparison between expected interaction diagram for column A-	
2.06-1.52 and interaction diagram by codes	47
Figure 4.9: Comparison between expected interaction diagram for column A-	
2.07-1.84 and interaction diagram by codes	48
Figure 4.10: Comparison between expected interaction diagram for column B-	
2.97-0.98 and interaction diagram by codes	49
Figure 4.11: Comparison between expected interaction diagram for column B-	
2.98-1.24 and interaction diagram by codes	49
Figure 4.12: Comparison between expected interaction diagram for column B-	
2.99-1.53 and interaction diagram by codes	50
Figure 4.13: Comparison between expected interaction diagram for column B-	
3.99-1.88 and interaction diagram by codes	50
Figure 4.14: Comparison between expected interaction diagram for column D-	
3.94-0.98 and interaction diagram by codes	51
Figure 4.15: Comparison between expected interaction diagram for column D-	
3.97-1.25 and interaction diagram by codes	52
Figure 4.16: Comparison between expected interaction diagram for column D-	
3.98-1.55 and interaction diagram by codes	52
Figure 4.17: Comparison between expected interaction diagram for column D-	
3.99-1.88 and interaction diagram by codes	53
Figure 4.18: Comparison between expected interaction diagram for column E-	
5.03-0.99 and interaction diagram by codes	54
Figure 4.19: Comparison between expected interaction diagram for column E-	
5.04-1.26 and interaction diagram by codes	54
Figure 4.20: Comparison between expected interaction diagram for column E-	
5.05-1.56 and interaction diagram by codes.	55
Figure 4.21: Comparison between expected interaction diagram for column E-	55
5.07-1.90 and interaction diagram by codes	55
Figure 4.22: Comparison between expected interaction diagram for column F-	33
6.12-1.01 and interaction diagram by codes	56
Figure 4.23: Comparison between expected interaction diagram for column F-	50
6.14-1.28 and interaction diagram by codes	57
Figure 4.24: Comparison between expected interaction diagram for column F-	51
	57
6.16-1.58 and interaction diagram by codes.	31
Figure 4.25: Comparison between expected interaction diagram for column F-	50
6.18-1. 92 and interaction diagram by codes	58
Figure 4.26: Comparison between expected interaction diagram for column G-6.93-1.01 and interaction diagram by codes.	59
O 7 3-1 OT AND INTERACTION CHARLAND DV COOCS	75