

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

OPTIMIZING HYDRAULIC FRACTURING PARAMETERS USING GENETIC PROGRAMMING

By

Esraa Osama Ibrahim Mousa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of

INTERDISCIPLINARY-MASTER OF SCIENCE in GAS PRODUCTION ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

OPTIMIZING HYDRAULIC FRACTURING PARAMETERS USING GENETIC PROGRAMMING

By

Esraa Osama Ibrahim Mousa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of

INTERDISCIPLINARY-MASTER OF SCIENCE in GAS PRODUCTION ENGINEERING

Under the Supervision of

Prof. Dr.Eissa Shokir

Professor of Petroleum Engineering Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

OPTIMIZING HYDRAULIC FRACTURING PARAMETERS USING GENETIC PROGRAMMING

By Esraa Osama Ibrahim Mousa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of

INTERDISCIPLINARY-MASTER OF SCIENCE in GAS PRODUCTION ENGINEERING

Examining Committee	
Prof. Dr. Eissa Shokir,	— Thesis Main Advisor
Prof. Dr. Mahmoud Abu El Ela,	Internal Examiner
Prof. Dr. Attia Attia,	External Examiner

Approved by the

-Dean of Faculty of Energy and Environmental Engineering, The British University in Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Esraa Osama Ibrahim Mousa

Date of Birth: 1/1/1994

Nationality: Egyptian

E-mail: esraausama069@gmail.com

Phone.: 01007764233

Address: 25-kasr al ainy street, Cairo

Registration Date: 1/10/2016

Awarding Date: --/--/ 2021

Degree: Interdisciplinary- Masters of Science

Department: Gas Production Engineering

Supervisor:

Prof Dr. Eissa Shokir

Examiners:

Prof. Dr. Eissa Mohamed Shokir, (Thesis Main Advisor)

Prof. Dr. Mahmoud Abu El Ela, (Internal Examiner) Prof. Dr. Attia Mahmoud Attia, (External Examiner)

(Dean of Faculty of Energy and Environmental Engineering, The

British University in Egypt).

Title of Thesis:

Optimizing Hydraulic Fracturing Parameters Using Genetic Programming.

Key Words:

Hydraulic Fracturing; Fracture Half-length; Fracture Pressure; Fracture Width; Genetic Programming

Summary:

The researcher studied the development of new three simple models to predict the hydraulic fracturing parameters using artificial intelligence technique (Genetic Programming). The main three parameters are Fracture Pressure, Fracture Half Length and the Fracture Width. Where the inputs of the first model for calculating the fracture pressure are: current pressure, porosity, permeability, depth, Young's modulus, Poisson ratio. The inputs for the fracture half-length model are: Fracture Pressure, young's modulus, permeability, reservoir thickness. The inputs for fracture width model are: Fracture Pressure, Poisson ratio, permeability, reservoir thickness. The models were built using 180 points and verified using Monte Carlo technique. In addition, it was verified against three actual case studies.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been
Submitted for a degree qualification at any other university or institute. I further declare
that I have appropriately acknowledged all sources used and have cited them in the
references section.

Name:	Date:
Signature:	

Dedication

I am dedicating this thesis to my beloved family, husband, friends, workmates and all those who helped me to complete this work.

Acknowledgements

Firstly, I'd like to express my gratitude to my patient and supportive supervisor Prof. Eissa Shokir who has supported me throughout my master's thesis.

I am extremely grateful for Prof. Mahmoud Abu El Ela (the internal examiner of the thesis) for his time and effort reviewing my work. Also, I would like to thank Prof. Attia Attia the Dean of faculty of renewable energy engineering at the British University in Egypt for his advices throughout the work.

Also, I would like to show my appreciation to Cairo University and specifically Gas Production Engineering Program for guidance and facilities.

Finally, I would like to thank my family and husband for always being there and their endless support.

Table of Contents

DISCLAIMER	i
DEDICATION	ii
ACKNOWLEDGMENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	viii
NOMENCLATURE	ix
ABSTRACT	xi
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	3
2.1 INTRODUCTION	3
2.2 THEORY OF HYDRAULIC FRACTURING	3
2.3 STAGES OF HYDRAULIC FRACTURING	6
2.4 FRACTURE JOB DESIGN	6
2.5 FRACTURE GEOMETRY	10
2.5.1 Fracture Half- Length	12
2.5.2 Fracture Width	12
2.5.3 Fracture Height	13
2.5.4 Fracture Pressure	13
2.6 FRACTURE PROPAGATION MODELS	15
2.7 ARTIFICIAL INTELLIGENCE TECHNIQUES	17
2.8 EVOLUTIONARY ALGORITHMS	18
2.8.1 Genetic Algorithm	18
2.8.2 Genetic Programming	19
2.9 IMPLEMENTATION OF GENETIC PROGRAMMING	20
2.9.1 Crossover Operator in Genetic Programming	20
2.9.2 Mutation in Genetic Programming	21
2.10 ADVANTAGES OF GENETIC PROGRAMMING	23
2.11 APPLICATION OF GENETIC PROGRAMMING IN OIL AND GAS INDUSTRY	23
2.12 OPTIMIZATION OF HYDRAULIC FRACTURING USING AI	25
2.13 CONCLUDING REMARKS	26
CHAPTER 3: STATEMENT OF THE PROBLEM AND METHODOLOGY.	27
CHAPTER 4: BUILDING THE DEVELOPED HYDRAULIC FRACTURIO	UNG
MODELS	28

4.1 INTRODUCTION	28
4.2 DATA GATHERING	28
4.2.1 Reservoir Data	28
4.2.2 Geomechanical Properties	29
4.2.3 Fracture Design Data	29
4.3 DATA FILTERING	29
4.4 MODELS DEVELOPMENT	30
4.4.1 Genetic Programming Toolbox (GP TIPS)	30
4.4.2 Distribution of Data Sets	32
4.4.3 Optimum GP Parameters Used in Building the Models Using GPTIPS	34
4.4.4 Running the Model	35
4.5 MODELS STRUCTURE (DEVELOPED CORRELATIONS)	35
4.5.1 Fracture Pressure Model Structure	36
4.5.2 Fracture Half-Length Model Structure	36
4.5.3 Fracture Width Model Structure	37
CHAPTER 5: RESULTS AND DISCUSSIONS	38
5.1 INTRODUCTION	38
5.2 MODELS VALIDATION	38
5.2.1 Fracture Pressure Model Results	38
5.2.2 Fracture Half-length Model Results	42
5.2.3 Fracture Width Model Results	47
5.3 SENSITIVITY ANALYSIS	50
5.4 FIELD APPLICATIONS	55
5.4.1 Case Study I	55
5.4.2 Case Study II	56
5.4.2 Case Study III	57
5.5 DISCUSSION	58
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	61
REFERENCES	62
APPENDIX I: Fracture Pressure Data & Calculations	62
APPENDIX II: Fracture Half Length Calculations & Data	71
APPENDIX III: Fracture Width Calculations & Data	74

List of Figures

Figure 2- 1 Hydraulic Fracturing Theory [9]	
Figure 2-2 Mechanism of Hydraulic Fracturing [14]	5
Figure 2-3 Effective Wellbore Radius, r'w/Xf, Vs. Fcd [24]	8
Figure 2-4 Fracture Design Parameters[40]	. 11
Figure 2-5 Fracture Half Length [44]	. 12
Figure 2-6 Mini FracTest [49]	
Figure 2-7 Step Rate Test [49]	. 14
Figure 2-8: Perkins, Kern, and Nordgren Model Geometry [52]	. 16
Figure 2-9: by Geertsma, de klerk, Khristianovic and Zheltov Model Geometry [52]	. 16
Figure 2-10 Genetic Algorithm Cycles [56]	. 19
Figure 2-11 Cross Over in Genetic Programming [58]	
Figure 2-12 Mutation in Genetic Programming [58]	. 21
Figure 2-13 Genetic Programming Flow Chart [60]	. 22
Figure 2-14: Fitness History of the Best S-expression [60]	. 23
Figure 4-1 Methodology Flow Chart	. 28
Figure 4-3MATLAB Run Summary Interface	. 36
Figure 5-1 Snapshot of the MATLAB Fracture Pressure Correlation	. 39
Figure 5-2 Deviation between the actual and predicted Fracture Pressure for the Testing da	ıta
set	. 40
Figure 5-3 Deviation between the Field Data and predicted Fracture Pressure for the Training	_
data set	
Figure 5-4 Comparisons between the Field Data of Fracture Pressure and Predicted Fracture	
Pressure	
Figure 5-5Absolute Average Relative Error (AARE or ARE) at Each Generation for the Fractu	
Pressure Model	
Figure 5-6 Snapshot of the MATLAB Fracture Half Length Model	
Figure 5-7 Deviation between the Predicted Fracture Half Length Using the Developed Moc	
and Fracture Half Length Field Data for the Testing Data Points	
Figure 5-8 Deviation between the Predicted Fracture Half Length Using the Developed Moc	
and Fracture Half Length Field Data for the Training Data Points	. 44
Figure 5-9 Comparison between the Predicted Fracture Half-length Using the Developed	
Model and the Fracture Half-length Field Data	
Figure 5-10 Absolute Average Relative Error (AARE or ARE) at Each Generation for the Fract	
Half Length Model	
Figure 5-11 Fracture Width Model Snapshot	. 48
Figure 5-12 Deviation between the Predicted Fracture by the Developed Model and the	
Fracture Width Field Data for the Testing Data Points	. 48
Figure 5-13 Deviation between the Predicted Fracture by the Developed Model and the	
Fracture Width Field Data for the Training Data Points	
Figure 5-14 Comparison between the Predicted Fracture Width Using the Developed Mode	
and Fracture Width Field Data	. 49

Figure 5-15 Absolute Average Relative Error (AARE or ARE) at Each Generation for the Fract	:ure
Width Model	. 50
Figure 5-16 Probability Distribution for the Fracture Pressure Model	. 52
Figure 5-17 Sensitivity Analysis of the Fracture Pressure	. 52
Figure 5-18 Sensitivity Analysis of the Fracture Length Model	. 53
Figure 5-19 Probability Distributions of the Fracture Width Model	. 54
Figure 5-20 Sensitivity Analysis of the Fracture Width Model	. 55
Figure 5-21 Results of the Fracture Pressure Calculations for the three Case Studies	. 59
Figure 5- 22 Results of the Fracture Half-Length Calculations for the three Case Studies	. 60
Figure 5-23 Results of the Fracture Width Results Calculations for the three Case Studies	. 60
Figure A1-1 Fracture Pressure Validation	. 68
Figure A1-2 Fracture Pressure Model Gene Weight	68
Figure A1-3 Fracture Pressure Population Model	69
Figure A1-4 Model Tree Structure	69
Figure A1-5 Model Tree Structure II	.70
Figure A2-1 Fracture Half Length Model Validation	.72
Figure A2-2 Fracture Half Length Model Prediction	.72
Figure A2-3 Fracture Half Length Gene Weigh	.73
Figure A2-4 Fracture Half Length Population Model	.73
Figure A3-1 Fracture Width Model Validation	.75
Figure A3-2 Fracture Width Model Prediction	.75
Figure A3-3 Fracture Width Gene Weight	.76
Figure A3-4 Fracture Width Population Model	76