

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

LOW POWER DUAL MODE BLUETOOTH 5.1/BLUETOOTH LOW ENERGY RECEIVER DESIGN

By

Ahmed Magdy Afifi Azb

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electronics and Communications Engineering

LOW POWER DUAL MODE BLUETOOTH 5.1/BLUETOOTH LOW ENERGY RECEIVER DESIGN

By **Ahmed Magdy Afifi Azb**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Ahmed Hussien Mohamed Khalil Dr. Hassan Mostafa Hassan Mostafa

Professor Electronics and Communications Engineering Faculty of Engineering, Cairo University Associate Professor Electronics and Communications Engineering Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

LOW POWER DUAL MODE BLUETOOTH 5.1/BLUETOOTH LOW ENERGY RECEIVER DESIGN

By **Ahmed Magdy Afifi Azb**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Examining Committee	
Prof. Ahmed Hussien Mohamed	Thesis Main Advisor
Associate Prof. Hassan Mostafa Hassan	Advisor
Prof. Ahmed Nader Mohieldin	Internal Examiner
Prof. Ahmed Hassan Kamel Madian Electronics Professor, and M.Sc. Microelectron	External Examiner nics and NISC Director,

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

Faculty of Engineering and applied science, NILE University

Engineer's Name: Ahmed Magdy Afifi Azb

Date of Birth: 2/5/1993 **Nationality:** Egyptian

E-mail: amagdy.afifi@gmail.com **Phone:** 01009785346 – 01272797723

Address: Electronics and Communications Engineering

Department, Cairo University, Giza 12613, Egypt

Registration Date: 1/3/2017 **Awarding Date:** /

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Ahmed Hussien Mohamed

Associate Prof. Hassan Mostafa Hassan

Examiners:

Prof. Ahmed Hussien Mohamed Thesis main Advisor

Dr. Hassan Mostafa Hassan Advisor

Prof. Ahmed Nader Mohieldin Internal examiner

Prof. Ahmed Hassan Kamel Madian External examiner Electronics Professor, and M.Sc. Microelectronics and NISC Director, Faculty of Engineering and applied science, NILE University

Title of Thesis:

LOW POWER DUAL MODE BLUETOOTH 5.1/BLUETOOTH LOW ENERGY RECEIVER DESIGN

Key Words:

Bluetooth; passive mixer-first; high-performance mode; low-power mode; current reuse

Summary:

This thesis presents, for the first time, single Bluetooth5.1 and Bluetooth low energy compliant receiver design compromises two operation modes – low-power mode, and high-performance mode – using fundamental and third harmonic LO down-conversion in passive mixer-first. Passive mixer analysis is presented as well. It brings up various techniques for low-power consumption at both system and circuit level. Low-IF mixer first architecture is utilized to optimize power consumption at system level. Furthermore, harmonic down-conversion in the low-power mode enables quadrature LO generation. Reduced supply voltage, passive mixers, and current reuse address power minimization at circuit level. It is implemented in 65 nm CMOS technology and occupies an active area of 0.551 mm^2 consuming only 697 μ W and 1250 μ W when operating in low-power mode and high-performance mode respectively. Low-power mode RX achieves a noise figure of 12.82 dB and IIP3 of +5.58 dBm while provides image rejection by 81 dB. For high-performance mode, the RX front end achieves a 6.3 dB noise figure, +2.6 dBm IIP3, and 65 dB image rejection.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Dedication

То

My Father,

My Mother,

My elder brother Alaa,

My little brother Hossam,

My sister in law Yasmeen

, and

My lovely nephew Adam

For their love and support

Acknowledgments

First and foremost, I am thankful to ALLAH, the most gracious, and the ever merciful, for giving me the strength and perseverance to complete this work.

I would like to thank the many individuals who supported me in at least as many different ways over the past four years:

My advisors, Associate Prof. Sameh Assem Ibrahim; Prof. Ahmed Hussien; and Associate Prof. Hassan Mostafa, for putting so much trust in me, dedicating time to my work, their guidance, help, encouragement, and support. I am very grateful to them for helping me in my first steps in my academic career. Dr.Sameh's inspiring ideas really shed light on areas of improvements in this work.

Of course I am always grateful and never forget the most important of all: my parents; my lovely brothers: Alaa, and Hossam; my uncles and aunts; my cousins; and my sister in law, Yasmeen, for their continuous love, patience, support and companionship. Their constant faithfulness, encouragement and understanding enabled me to confront many challenges of the past years. It wouldn't have happened to get this work completed without my lovely parents, and my lovely brothers.

Special thanks and words of appreciation are due to my ex-TAs; Amr Saad, and Omar Bakry who are currently phD candidates. They have been generously supporting me a lot both technically, and emotionally from the very starting point to the work completion. I had learned much from our technical discussions, and long nights of debugging.

Thanks are due to my class colleagues; Saif, and Mohamed Radwan who generously helped me to get better environment for verifying design simulation results, resolve some issues, and give me guidance in different directions.

Thanks are also due to my invaluable network of supportive, generous and loving professors, and colleagues without whom I could not have achieved the whole thing.

Table of Contents

DISCLAIMER.	ERROR! BOOKMARK NOT	DEFINED.
ACKNOWLED	GMENTS	III
DEDICATION .		I
TABLE OF CO	NTENTS	IV
LIST OF TABL	ES	VI
	RES	
	URE	
ABSTRACT		XI
CHAPTER 1:1	NTRODUCTION	1
1.1.	BACKGROUND	1
1.2.	ORGANIZATION OF THE THESIS	2
CHAPTER 2:1	LITERATURE REVIEW	3
2.1.	Introduction	3
2.2.	WIRELESS SENSOR NETWORKS (WSN)	
2.3.	WSN REQUIREMENTS	
2.4.	WSN APPLICATIONS	
2.5.	Power optimization techniques	
2.5.1.	Application layer:	
2.5.1. 2.5.2.	•	
	Transport layer:	
2.5.3.	Network layer:	
2.5.4.	Data link layer:	
2.5.5.	MAC layer:	
2.5.5.1.	Synchronous:	
2.5.5.2.	Pseudo-asynchronous:	
2.5.5.3.	Asynchronous:	
2.5.6.	Physical layer:	
2.5.6.1.	Receiver Architectures:	
2.5.6.1.1. 2.5.6.1.2.	Energy-Detection Receivers	
2.5.6.1.3.	Super-regenerative ReceiversInjection-locking Receivers	
2.5.6.1.4.	Sliding IF Receivers	
2.5.6.1.5.	Direct Conversion Receivers	
2.5.6.1.6.	Low-IF Receivers	
2.5.6.2.	System power-efficient techniques:	
2.5.6.2.1.	Mixer first front end	12
2.5.6.2.2.	Harmonic down-conversion	13
2.5.6.3.	Circuit power-efficient techniques:	
2.5.6.3.1.	Passive building blocks	
2.5.6.3.2.	High-Q filters	
2.5.6.3.3.	Current reuse (recycling) and building blocks stacking	
2.5.6.3.4.	Reduced supply voltage	26

2.6.	SUMMARY	26
CHAPTER 3	3 : SYSTEM DESIGN	27
3.1.	RECEIVER ARCHITECTURE	27
3.2.	RECEIVER SYSTEM DESIGN	28
3.2.1.	Noise Figure (NF):	29
3.2.2.	Receiver Gain:	31
3.2.3.	Linearity (Third order Input Intercept Point IIP3):	31
3.2.4.	Linearity (Second order Input Intercept Point IIP2):	33
3.3.	SUMMARY	33
CHAPTER 4	4 : PASSIVE MIXER ANALYSIS	35
4.1.	BACKGROUND AND MOTIVATION	35
4.2.	FOUR-PHASES PASSIVE MIXER ANALYSIS	35
4.3.	SUMMARY	42
CHAPTER S	5 : RECEIVER DESIGN	43
5.1.	BACKGROUND AND MOTIVATION	43
5.2.	RECEIVER ARCHITECTURE	43
5.3.	RECEIVER CIRCUIT DESIGN	46
5.3.1.	Integrated Front End Matching Circuit	46
5.3.2.	Four-Phases Passive Mixer	
5.3.3.	Low-IF LNA	46
5.3.4.	Complex filter	47
5.3.5.	VCO and frequency divider	49
5.4.	SIMULATION RESULTS	53
5.5.	COMPARISON TO RECEIVERS STATE OF THE ART	64
WORK CON	NTRIBUTION	66
DISCUSSIO	N AND CONCLUSIONS	67
FUTURE W	ORK	68
REFERENC	ES	69
APPENDI	X A: SYSTEM ARCHITECTURE TRADE-OFFS OCTAVE	E SCRIPT
•••••		76
	X B: ANALYTICAL, AND SIMULATED NOISE FIGURE	
OCTAVE SO	CRIPT	82
APPENDIX	C: DESIGN PARAMETERS	86

List of Tables

3.1:	BLUTOOTH5	AND	BLE	TARGETED	SPECIFI	CATIONS	SUMMARY
			• • • • • • • • • •				29
3.2:	RECEIVI	ER	SYS	STEM	LEVEL	SPEC	IFICATIONS
							34
5.1:1	PERFORMANC	E SUM	MARY	Y AND COMI	PARISON	WITH STA	TE-OF-THE-
ART	٠						64

List of Figures

2.1: Energy-detection receiver architecture [3]	8
2.2: Super-regenerative receiver architecture [33]	9
2.3: Injection-locking receiver architecture [3]	
2.4: Sliding IF receiver architecture [35]	.10
2.5: Direct conversion receiver architecture [35]	
2.6: Classic <i>RC</i> polyphase filter [11]	.16
2.7: Polyphase filter passes one input sequence, counterclockwise, and nulls	the
other input sequence [11]	
2.8: Cascade response of five-stage stagger-tuned RC polyphase filter [11]	.17
2.9: Normalized prototype lumped-element circuit for a quadrature hybrid coupl	ler
[43]	18
2.10 a: N-path passive mixer band-pass filter [65]	.21
2.10 b: N-path passive mixer notch filter [65]	.21
2.10 c: N-path mixer clock distribution [65]	.21
2.11: Single mixer N-path BPF configuration and respective frequency respons	ses
[65]	
2.12: Current reuse operation principle [51]	.23
2.13: Resistive feedback current reuse configuration	.24
2.14: Current reuse VCO [53]	.24
2.15: Single LC tank quadrature LMV cell [54]	.25
3.1: Receiver architecture	.28
4.1: Four-phases passive mixer configuration model loaded by sampling capacito	ors
and resistors [61]	.36
4.2: Simplified 4-phases passive mixer configuration LTI model	.37
4.3 a: Analytical and simulated 4-phases passive mixer input impedance Z_{in}	eal
component when driven by fundamental LO against RF frequency	.38
4.3 b: Analytical and simulated 4-phases passive mixer input impedance 2	Z_{in}
imaginary component when driven by fundamental LO against RF frequen	су
4.3 c: Analytical and simulated 4-phases passive mixer input impedance Z_{in} re	eal
component when driven by third harmonic LO against RF frequency	39
4.3 d: Analytical and simulated 4-phases passive mixer input impedance 2	Z_{in}
imaginary component when driven by third harmonic LO against RF frequen	су
	39
4.4 a: Analytical and simulated noise figure of 4-phases passive mixer again	nst
baseband resistance R_B with down-conversion by fundamental LO components	ent
	40
4.4 b: Analytical and simulated noise figure of 4-phases passive mixer again	nst
baseband resistance R_B with down-conversion by third harmonic LO components	ent
	40
5.1: Proposed receiver architecture	
5.2: Estimated FOM against number of passive mixer phases	.45
5.3: Current reuse GM-C complex pole	.48
5.4: Class C VCO core	
5.5: 25% non-overlapping clock generation	.51
5.6: Divider Latch	.52

5.7: Receiver Layout	53
5.8: Receiver noise figure in the two operation modes	54
5.9: Receiver transfer function in the two operation modes	55
5.10: Front end out-band IIP3 in the low-power mode	55
5.11: Front end out-band IIP3 in the high-performance mode	56
5.12: VCO phase noise in the two operation modes	56
5.13: S11 in the two operation modes	57
5.14: In-Band blocker tolerance in the two operation modes	58
5.15: Out-Band blocker tolerance in the two operation modes	58
5.16: Receiver noise figure in the high-performance mode under PVT w	vithout
calibration	
5.17: Receiver noise figure in the low-power mode under PVT without calib	oration
5.18: Receiver noise figure in the low-power mode under PVT with mixer	-
capacitors calibration	
5.19: Receiver transfer function in the high-performance mode under PVT w	
calibration	
5.20: Receiver transfer function in the high-performance mode under PV	
complex filter pole capacitors calibration	
5.21: Receiver transfer function in the low-power mode under PVT w	
calibration	
5.22: Receiver transfer function in the low-power mode under PVT with co	
filter pole capacitors calibration	
5.23: S11 in the high-performance mode under PVT without calibration	
5.24: S11 in the low-power mode under PVT without calibration	63