

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

NEUTROPHIL-TO-LYMPHOCYTE COUNT RATIO IN PREDICTING PROGNOSIS OF SEPTIC SHOCK PATIENTS

Thesis

Submitted for partial fulfillment of the Master

Degree in

In Intensive Care

By

Mostafa Mansour Mohamed Elsaid ELryany M.B.B.Ch (Alexandria University, 2011)

Supervised by

Prof. Dr. Hoda Omar Mahmoud

Professor of Anesthesiology, Intensive Care and Pain Management
Faculty of Medicine - Ain Shams University

Assistant Prof. Dr. Niven Gerges Fahmy

Assistant Professor of Anesthesiology, Intensive Care and Pain Management

Faculty of Medicine - Ain shams University

Assistant Prof. Dr. Mona Ahmed Mohamed Abdelmotaleb Ammar

Assistant Professor of Anesthesiology, Intensive Care and Pain Management

Faculty of Medicine - Ain shams University

Faculty of Medicine Ain Shams University

2021

List of Contents

Ti	tle	Page
•	List of Abbreviations	. I
•	List of Tables	. III
•	List of Figures	. V
•	Introduction	. 1
•	Aim of the Work	. 5
•	Review of Literature	
	- Chapter (1): Sepsis	. 6
	- Chapter (2): Markers in Sepsis	. 19
•	Patients and Methods	. 38
•	Results	. 42
•	Discussion	. 69
•	Summary	. 79
•	Limitations	. 81
•	Conclusion	. 82
•	Recommendations	. 83
•	References	. 84
•	Arabic Summary	

List of Abbreviations

ACCP	American college of chest physicians
ADM	Adrenomedullin
Ang	Angiopoietin
ATPs	Adenosine triphosphates
BP	Blood pressure
СВС	Complete blood count
CD14	Cluster of differentiation 14
CD64	Cluster of differentiation 64
ChT	Chitotriosidase
CI	Cardiac index
CO2	Carbon dioxide
СРВ	Cardiopulmonary bypass
CRP	C-reactive protein
cvaCO2	Gap central venous to arterial carbon dioxide gap
DIC	Disseminated intravascular coagulopathy
HMGB1	High mobility group box 1
I/R	Ischemia reperfusion
ICU	Intensive care unit
IL-1	Interleukin 1
IL-10	Interleukin 10
IL-12	Interleukin 12
IL-1B	Interleukin 1B
IL-2	Interleukin 2
IL-27	Interleukin 27
IL-4	Interleukin 4
IL-6	Interleukin 6
IV	Intravenous

List of Abbreviations

kDa	Kilodalton
LBP	Lipopolysaccharide binding protein
LPS	Lipopolysaccharide
MIF	Migration inhibitory factor
MRSA	Methicillin- resistant staph aureus
MSSA	Methicillin-sensitive staph aureus
mvaCO2	Mixed venous to arterial carbon dioxide gap
NLR	Neutrophil to lymphocyte count ratio
O2	Oxygen
PCO2	Partial pressure of carbon dioxide
PCT	Procalcitonin
PMNs	Polymorphoneuclear
PPV	Pulse pressure variability
proADM	Proadrenomedullin
SaO2	Arterial oxygen saturation
SCCM	Society of critical care medicine
Scvo2	Central venous oxygen saturation
SIRS	Systemin inflammatory response syndrome
SOFA	Sequential organ failure assessment
sTREM-1	Soluble triggering receptor expressed on myeloid cell 1
suPAR	Soluble urokinase plasminogen activator receptor
svv	Stroke volume variability
TLR	Toll like receptors
TNF	Tumor necrosis factor
TNF-a	Tumor necrosis factor alpha
uPAR	.Urokinase plasminogen activator receptor

List of Tables

Table No.	Title	Page
Table (1):	Comparison between the 3 groregarding demographic data (age sex) and the source of sepsis	and
Table (2):	Comparison between the 3 groregarding haemodynamics date SOFA score	and
Table (3):	Post hoc analysis for the significant parameters in table (1)	
Table (4):	Comparison between the the studied groups regarding Neutro count, Lymphocyte count, NL procalcitonin and CRP in day admission	CR, 1 of
Table (5):	Post hoc analysis for Neutrophil co Lymphocyte count, NLCR, procalcite and CRP in the three studied groups	onin
Table (6):	Comparison between the survand late mortality groups regard Neutrophil count, Lympho count, NLCR, procalcitonin and on the 4th day of admission	ding cyte CRP
Table (7):	Comparison between the 1st and day of admission regarding Neutro count, Lymphocyte count, NL procalcitonin and CRP in mortality group	phil CR, late

List of Tables (Continued)

Table No.	Title Page
Table (8):	Comparison between the 1st and 4th day of admission regarding Neutrophil count, Lymphocyte count, NLCR, procalcitonin and CRP in survival group
Table (9):	NLCR in the 1st day and age, SOFA score, Mean arterial pressure, neutrophils, lymphocytes, CRP and procalcitonin
Table (10):	NLCR in the 4th day and age, SOFA score, Mean arterial pressure, neutrophils, lymphocytes, CRP and procalcitonin

List of Figures

Figure No.	Title	Page
Figure (1):	The pathogenesis of sepsis multiorgan failure	
Figure (2):	The ScvO2 - cvaCO2gap - gu	
Figure (3):	Inflammatory response to se Immune response to sepsis is proinflammatory and inflammatory. An initial hy inflammatory phase is followed hypo-inflammatory phase. Imm suppression in sepsis contribute increased mortality in elepatients	both anti- yper- by a uno- es to derly
Figure (4):	Comparison between the t studied groups regarding sex of patient	f the
Figure (5):	Comparison between the t studied groups regarding age of patient	f the
Figure (6):	Comparison between the t studied groups regarding the si sepsis in the patient	te of
Figure (7):	Comparison between the t studied groups regarding SOFA s of the patient	
Figure (8):		three nean 46

List of Figures (Continued)

Figure No.	Title	Page
Figure (9):	The relationship between neutrophils and the three stugroups in the first day	
Figure (10):	The relationship between lymphocytes and the three stugroups in the first day	
Figure (11):	The relationship between the N and the three studied groups in first day	n the
Figure (12):	CRP level in the three studied grain the first day	-
Figure (13):	Procalcitonin level in the studied groups in the first day	
Figure (14):	Neutrophils level in late more and survival groups in the 4th da	=
Figure (15):	Lymphocytes level in late mort and survival groups in the 4th da	· ·
Figure (16):	NLCR in late mortality and sur groups in the 4th day	
Figure (17):	CRP in late mortality and sur groups in day 4	
Figure (18):	Procalcitonin in late mortality survival groups in the 4th day	
Figure (19):	Comparison between neutrophi day 1 and day 4	

List of Figures (Continued)

Figure No.	Title	Page
Figure (20):	Comparison between NLCR in d and day 4	•
Figure (21):	Comparison between CRP in day 4	
Figure (22):	Comparison between procalciton day 1 and day 4	
Figure (23):	Comparison between neutrophil day 1 and day 4	
Figure (24):	Comparison between lymphocyte day 1 and day 4	
Figure (25):	Comparison between NLCR in d and day 4	•
Figure (26):	Comparison between CRP in day 4	•
Figure (27):	Comparison between procalciton day 1 and day 4	
Figure (28):	The relationship between NLCl days 1 and SOFA score	
Figure (29):	The relationship between NLCl day 1 and mean arterial by pressure	olood
Figure (30):	The relationship between NLCR Neutrophils count in day 1	and
Figure (31):	The relationship between NLCR lymphocytes in day 1	

List of Figures (Continued)

Figure No.	Title	Page
Figure (32):	The relationship between NLCR CRP in day 1	
Figure (33):	The relationship between NLCR procalcitonin in day 1	
Figure (34):	The relationship between NLCR Mean arterial pressure in the day	4th
Figure (35):	The relationship between NLCR neutrohhils in the 4th day	
Figure (36):	The relationship between NLCR CRP in the 4th day	
Figure (37):	The relationship between NLCR procalcitonin in the 4th day	

Abstract

Background: Septic shock is one of the most common causes of admission to the intensive care unit in the world and one of the most common causes of death among intensive care patients. Since the definition of sepsis and septic shock and many studies have been designed to understand everything about sepsis regarding mechanism, pathophysiology, complications, diagnosis, management and all other aspects.

Objective: To find the association between neutrophil to lymphocyte count ratio and the mortality from septic shock patients. The work aims also to determine if this ratio can be used as a prognostic marker of septic shock patients and to compare this ratio with other sepsis markers as C-reactive protein (CRP) and procalcitonin.

Patients and Methods: This study was conducted prospectively in critical care unit in Ain Shams Hospital, a university-affiliated, tertiary referral center in Cairo, Egypt. Study subjects included 125 patients between January 2018 to January 2019. The ethics committee of our institution approved the study protocol, and written informed consent was obtained from each patient's family.

Results: In our study, the neutrophils count was significantly increased in survived patients compared with early and late mortality patients in day 1 while lymphocytes count was lower in survived patient than early and late mortality patients and the NLCR in our study was higher in survived patients than early and late mortality patients. In day 4, our results revealed significant increase in neutrophils count in patients of late mortality compared with its count in survived

patients, while lymphocytes didn't show any significant difference compared with its count in survived patients with significant increase in NLCR in patients of late mortality compared with those of survived patients in day 4. Both CRP and procalcitonin are increased in patients of early and late mortality groups compared with its value in survived patients in day 1 and 4.

Conclusion: This study demonstrates a real relationship between the NLCR and the risk of death in septic shock patients. Septic shock patients at risk of early death presented a low NLCR at admission, although late death was associated with an increased NLCR during the first 5 days. Early and late death should be distinguished because they may involve different underlying mechanisms, and the NLCR might be considered as a discriminant indicator of early or late death. In addition, our findings provide more insight into biology. The circulating neutrophil and lymphocyte trends observed in this study offer an interesting mechanistic viewpoint. We observed that circulating lymphocytes and the NLCR behave in opposite ways in early- and late death patients, supporting the hypothesis that divergent mechanisms could be involved in these two groups.

Keywords: C-reactive protein, intensive care unit