

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Transdermal delivery of an antipsychotic drug using Nano-carriers

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master degree
In Pharmaceutical Sciences
(Pharmaceutics)

By

Fatma Sa'eed Mostafa Mohamed

Bachelor of Pharmaceutical Sciences, 2013 Faculty of Pharmacy, Ain Shams University

Under Supervision of

Dr. Ahmed Shawky Geneidi, Ph.D

Professor of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Ain Shams University

Dr. El-Sayed Abd El Ghany El-Sayed, Ph.D

Professor of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Badr University in Cairo

Dr. Mona Mohamed Ahmed Abdel-Mottaleb, Ph.D

Associate Professor of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Ain Shams University

Acknowledgments

Throughout the working and writing of this thesis I have received a great deal of support and assistance.

At the beginning, my deepest gratitude goes to Allah for giving me the strength to accomplish this thesis with all the difficulties and triumphs I experienced. And I pray to Allah to accept it as a good deed.

I would like to thank my professors and supervisors without whom I would not have been able to complete this research and without whom I would not have made it through my master's degree!

My deep sincere indebtedness are first addressed to the late Professor Ahmed Shawky Geneidi, Professor of pharmaceutics, Faculty of Pharmacy, Ain Shams University, may Allah bless his soul who passed away at the beginning of this work but I will never forget his infinite support and continuous encouragement during my very first steps in the research career.

My great appreciation to Professor **El-Sayed Abdel-Ghany El-Sayed**, Professor of pharmaceutics, Faculty of Pharmacy, Badr University in Cairo, for his continuous support, great encouragement, and sincere suggestions throughout the development of this work.

My deepest indebtedness, respect and great appreciation to Associate Professor Mona M.A. Abdel-Mottaleb, Associate Professor of pharmaceutics, Faculty of Pharmacy, Ain Shams University, I was lucky to have her as supervisor throughout my postgraduate career and I will never be able to describe how much I learned from her valuable instructions, wholehearted guidance, patience and continuous encouragement.

Acknowledgments

Special thanks to Professor Mohammad EL-Shanawany, Dean of Faculty

of Pharmacy, Badr University in Cairo for helping and supporting me

throughout the different stages of this work.

Furthermore, many thanks for all my colleagues and friends in Faculty of

Pharmacy, Badr University in Cairo for their precious support and

friendship.

At last and most important, my family whom without them nothing would

have really been achieved, My Great Parents (Mother and father): "thank you

both for your help, patience and continuous support and for taking care of me

and my son all the time". My sister, who has been my backbone: "thank you

for your hard-times supporter". Nevertheless, I will always be grateful and

never forget how my husband stood beside me, encouraged me in every step

of the thesis. He has been a great support, and a great father for our son.

Finally, my little son: "Thanks God for your presence, I love you".

اللهم لك الحمد و المنة و الفضل

Fatma Sa'eed

List of contents

List of AbbreviationsV
List of TablesV
List of FiguresVII
AbstractX
General Introduction
1. Schizophrenia
1.1. Introduction
1.2. Pathophysiology
1.3. Symptoms
1.4. Treatment protocols
1.5. Side effects of oral antipsychotics
1.6. Challenges against effective treatment of schizophrenia14
2. Second generation Antipsychotics
2.1. Advantages of second generation antipsychotics over first generation antipsychotics
2.2. Transdermal formulations of second generation antipsychotics in literature
3. Lipid nanocarriers
Scope of Work
Chapter I: Preparation and evaluation of asenapine maleate loaded lipic nanocapsules.
Introduction
Materials and Methods42
Materials:42
Equipment: 42
Methodology:
1. Determination of wavelength of maximum absorbance (λmax)43
2. Construction of the calibration curve of asenapine maleate in methanol and in phosphate buffer solution pH (7.4) containing 2% Tween 80 (release media) using spectrophotometric assay

		sphate buffer solution pH (7.4) containing 2% Tween 80 (release lia) using RP-HPLC assay	44
	4.	Preparation of blank and asenapine maleate loaded LNCs	45
	5.	Characterization of the prepared LNCs	47
	5.1.	Measurement of particle size and poly dispersity index (PDI)	47
	5.2.	Determination of Zeta potential	48
		Determination of drug content in asenapine maleate loaded Cs.	48
6. Ex vivo skin permeation/deposition of asenapine malea asenapine maleate loaded LNCs:			
	7. mal	Effect of storage on the physical stability of the selected asenapine eate loaded LNCs.	
loaded LNCs using high resolution transmission electron mic		Microscopical examination of the selected asenapine maleate led LNCs using high resolution transmission electron microscopy a-TEM)	50
	9.	Fourier-transform infrared spectroscopy (FTIR)	50
	10.	Statistical analysis	51
Res	ults a	and Discussion	52
	1. dete	Spectrophotometric scanning of asenapine maleate and ermination of wavelength of maximum absorbance (λmax)	52
	-	Calibration curves of asenapine maleate in methanol and in sphate buffer solution containing 2% Tween 80 pH 7.4 (release lia) using UV spectrophotometry	53
		The Calibration curve of asenapine maleate in phosphate buffer ation pH (7.4) containing 2% Tween 80 (release media) using RP-LC assay	55
	4.	Preparation and characterization of blank LNCs	 57
	4.1.	Particle size and PDI	60
	4.2.	Zeta potential	63
	5. LNO	Preparation and characterization of asenapine maleate loaded Cs.	65
	5.1.	Particle size and PDI	67
	5.2.	Zeta potential	68

5.3.	Drug content		
6.	Ex vivo skin permeation/deposition study70		
7. Effect of storage on the physical stability of asenapine malea			
load	ed LNCs:		
8.	High resolution transmission electron microscopy (HR-TEM) 77		
9.	Fourier-transform infrared spectroscopy (FTIR)78		
Conclusion	ons		
Chapter invasome	II: Preparation and evaluation of asenapine maleate loaded es.		
Introduct	ion		
Materials	and Methods		
Mate	erials:92		
Equi	pment:		
Meth	nodology:93		
1.	Preparation of asenapine maleate loaded invasomes:93		
	Physicochemical characterization of the prepared soft ovesicles		
	Effect of storage on selected asenapine maleate loaded ulations		
	Ex vivo skin permeation/deposition study of the selected asenapine eate loaded formulations		
5.	High resolution transmission electron microscopy (HR-TEM) 97		
6.	Fourier-transform infrared spectroscopy (FTIR)98		
Results a	nd Discussion99		
1.	Preparation of asenapine maleate loaded invasomes:		
2.	Particle size analysis99		
3.	Zeta potential measurements		
4.	Entrapment efficiency		
5.	Effect of storage on the physical stability of invasomes:		
6.	Ex vivo skin permeation/deposition study		
	High resolution Transmission electron microscopy (HR-TEM) of elected invasomes:		

8. Fourier transform infrared spectroscopy (FTIR):11
Conclusions 11
Chapter III: <i>In vivo</i> studies of selected formulations for the transderma delivery of asenapine maleate.
Introduction 11
Materials and Methods
Materials11
Equipment:11
Animals11
Methodology11
1. Animals grouping11
2. Construction of asenapine maleate calibration curve in plasma usin RP-HPLC analysis
3. Pharmacokinetic Analysis
4. Histological study12
Results and Discussion
1. Quantitative analysis of asenapine maleate in plasma samples 12
2. In vivo pharmacokinetic analysis
3. Histological evaluation13
Conclusions 13
Future perspective 13.
Summary
References 14
Appendix
الملخص العربي

List of Abbreviations

Asenapine maleate	ASPM
Bioavailability	BAV
Differential scanning calorimetry	DSC
Distilled water	DW
Drug loading	DL
Dynamic light scattering	DLS
Reverse phase – High performance liquid chromatography	RP-HPLC
High resolution transmission electron microscopy	HR-TEM
Encapsulation efficiency	EE
Generally regarded as safe	GRAS
Hydrophile lipophile balance	HLB
Labrafac lipophile® WL 1349	LL
Lipid nanocapsules	LNCs
Lipid nanoparticles	LNPs
Molecular weight	Mw
Nanoparticles	NPs
Nanostructured lipid carriers	NLCs
Particle size	PS
Phase-inversion temperature	PIT
Phase-inversion zone	PIZ
Phosphate buffered saline	PBS
Polydispersity index	PDI
Surfactant	SAA
Transdermal drug delivery	TDD
Zeta potential	ZP

List of Tables

Table No.	Table Title	Page No.
Table 1	Structural brain changes in schizophrenic patients.	3
Table 2	A list of common symptoms of schizophrenia with brief description.	6
Table 3	First generation antipsychotics available in market with their approval dates and available dosage forms	10
Table 4	Second generation antipsychotics available in market with their approval dates and available dosage forms	11
Table 5	Detailed description of extrapyramidal side effects (EPS) induced by antipsychotics	13
Table 6	Detailed composition of the different blank LNCs	47
Table 7	Detailed composition of different ASPM loaded LNCs	48
Table 8	Relationship between concentration of ASPM and absorbance at λ_{max} 270 nm in methanol	54
Table 9	Relationship between concentration of ASPM and absorbance at λmax 270 nm in phosphate buffer solution pH 7.4 containing 2% Tween 80	55
Table 10	Relationship between ASPM concentrations and the peak areas	57
Table 11	Physical characterization of blank LNCs formulations	59
Table 12	Physical characterization of ASPM*-loaded LNC formulations	67
Table 13	Zeta potential of the different LNCs before and after drug loading	69

Table 14	Ex vivo skin permeation and deposition parameters of asenapine loaded lipid nanocapsules across rat skin	72
Table 15	The effect of storage of the selected ASPM loaded LNCs (F22-AS) on particle size, PDI and zeta potential	77
Table 16	Detailed composition of the different asenapine loaded soft nanovesicles	95
Table 17	Detailed characterization of ASPM loaded soft nanovesicles	100
Table 18	The effect of six months storage of loaded invasomes on particle size, PDI and zeta potential	106
Table 19	Ex vivo skin permeation parameters of ASPM loaded invasomes across rat skin	107
Table 20	Determination of asenapine deposition into rat skin treated with ASPM loaeded invasomes post 24 hours.	109
Table 21	Relationship between ASPM plasma concentrations and the peak areas using RP-HPLC	124
Table 22	In vivo pharmacokinetic parameters of transdermal application of optimized ASPM loaded LNCs compared to intravenous and oral route	127
Table 23	In vivo pharmacokinetic parameters of transdermal application of optimized ASPM loaded invasomes compared to intravenous and oral route	132

List of Figures

Figure No.	Figure Title	Page No.
Figure 1	Brain areas involved in the pathophysiology of schizophrenia*	3
Figure 2	Neurotransmission theories involved in pathophysiology of schizophrenia.	5
Figure 3	Electrically-responsive transdermal delivery systems (ETDS)	22
Figure 4	Schematic representation of capsules formed by a tensioactive shell composed by the association of hydrophilic PEGylated surfactant and lipophilic surfactant protecting an oily core (medium chain triglycerides).	27
Figure 5	The structure of invasomes versus liposomes.	30
Figure 6	Formulation steps of Lipid nanocapsules.	35
Figure 7	Chemical Structure of Kolliphor® HS15.	37
Figure 8	Chemical Structure of Kolliphor® EL.	37
Figure 9	Chemical structure of Tween 80.	38
Figure 10	Chemical Structure of Labrafac® PG.	40
Figure 11	Chemical Structure of Labrafil® M1944CS.	40
Figure 12	Chemical Structure of Miglyol® 812.	39
Figure 13	Chemical structure of the main components of lavender oil.	41
Figure 14	Spectrophotometric scanning spectrum of asenapine maleate in methanol.	52
Figure 15	Calibration curve of ASPM at 270 nm in methanol.	54
Figure 16	Calibration curve of ASPM at 270 nm in phosphate buffer solution containing 2% Tween 80.	55
Figure 17	Chromatogram of Asenapine maleate in phosphate buffer solution pH (7.4) containing 2% Tween 80.	56
Figure 18	Calibration curve of ASPM using RP-HPLC assay.	57
Figure 19	The effect of oil type on particle size of LNCs prepared using oil: surfactant ratio 1:1.	61
Figure 20	The effect of surfactant type and oil: surfactant ratio on particle size of LNCs.	62

Figure 21	The Effect of oil: surfactant ratio on zeta potential of LNCs.	63
Figure 22	The effect of ASPM loading on the particle size of LNCs.	67
Figure 23	Ex-vivo skin permeation profiles of asenapine from Labrafil based LNCs across rat skin (n=6).	72
Figure 24	Ex-vivo skin permeation profiles of asenapine from lavender oil based LNCs across rat skin (n=6).	72
Figure 25	The amounts of asenapine permeated per surface area and flux rates of ASPM from the different LNCs.	73
Figure 26	Deposition of asenapine from ASPM loaded LNCs in different skin layers.	75
Figure 27	Visualization of ASPM lipid nanocapsules (F22-AS) showing dense shell and light core.	77
Figure 28	FTIR spectra of drug, excipients, blank and loaded LNCs (F22-AS).	79
Figure 29	The chemical structure of d-limonene.	89
Figure 30	The chemical structure of cineole.	89
Figure 31	The chemical structure of Transcutol [®] .	90
Figure 32	Effect of penetration enhancer type on particle size of invasomes.	100
Figure 33	Effect of penetration enhancer concentration on entrapment efficiency of invasomes.	103
Figure 34	The effect of six months storage of loaded invasomes on particle size.	105
Figure 35	The effect of six months storage of loaded invasomes on poly dispersity index.	105
Figure 36	Ex-Vivo skin permeation profile of ASPM loaded invasomes through rat abdominal skin (n=6).	106
Figure 37	Deposition of ASPM in skin layers with different invasomes.	108
Figure 38	Visualization of ASPM invasomes containing 1% w/v limonene by transmission electron microscopy.	110
Figure 39	FTIR spectra of drug, excipients, blank and loaded invasomes (F2-AS).	112
Figure 40	Animals grouping	119
Figure 41	Calibration curve of ASPM extracted from plasma samples using RP-HPLC assay.	124
Figure 42	Plasma concentrations of Asenapine after IV, oral and transdermal administration	125