

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Adipose Tissue Derived Mesenchymal Stem Cells versus Metformin on Age-Related Changes of the Cerebellum of Albino Rat (Histological and Immune-Histochemical Study)

Thesis

Submitted for Partial Fulfillment of the MD Degree in **Histology and Cell Biology**

Presented By

Doaa Karem Metwaly Mostafa

Assistant Lecturer of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Supervised By

Prof. Dr. Soheir Kamal Ahmed

Professor of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Prof. Dr. Hanan Alaa Eldin Amin Saleh

Professor of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Prof. Dr. Ghada Galal Hamam

Professor of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Histology and Cell Biology Department Faculty of Medicine, Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Soheir Kamal Ahmed**, Professor of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Hanan Alaa Eldin Amin Saleh**, Professor of Histology and Cell
Biology, Faculty of Medicine, Ain Shams University, for
her sincere efforts, fruitful encouragement.

I am deeply thankful to **Prof. Dr. Ghada Galal Hamam**, Professor of Histology and Cell Biology, Faculty
of Medicine, Ain Shams University, for her great help,
outstanding support, active participation and guidance.

I would like to express my hearty thanks to my husband, his mother and my family for their support till this work was completed.

Doaa Karem Metwaly Mostafa

Words cannot express my thanks, gratefulness respect and love to my parents

I dedicate my work to the spirit of my parents

Also I dedicate my work to my husband and my little angles Omar, Youssef and Salma

Tist of Contents

Title	Page No.
List of Tables	6
List of Diagrams	7
List of Histograms	8
List of Abbreviations	9
Abstract	10
Introduction	1 -
Aim of the Work	3
Review of Literature	
The Cerebellum	4
• Aging	22
Metformin	27
• Stem Cells	30
Materials and Methods	34
Results	50
Discussion	235
Conclusion	261
Recommendation	262
Summary	263
References	270
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table 1:	Showing the mean number of cells/HPF ± SD in different groups	- 0
Table 2:	Showing the mean optical density granules/HPF ± SD in different group	
Table 3:	Showing the mean optical der synaptophysin/HPF ± SD in different	•
Table 4:	Showing the mean number of astro- cortex/HPF ± SD in different groups	v
Table 5:	Showing the mean number of astromedulla/HPF ± SD in different group	•

Tist of Diagrams

Diag. No.	Title	Page No.
Diagram 1:	Showing anatomical classification cerebellum	
Diagram 2:	Diagram showing the histological strong of the cerebellum	
Diagram 3:	Diagram showing the structure of cerglomerulus	
Diagram 4:	Showing the structure of the synaptic vesicles	
Diagram 5:	Showing the control of synaptobic traffic by synaptophysin	
Diagram 6:	Showing the migration of Purkinj (blue) from the ventricular neuroepit (VN) along the processes of radial cel to the pial surface (PS)	thelium ls (red)
Diagram 7:	Showing the progressive displacement of the Purkinje cells a gradual thinning of Purkinje cell leading to formation of the monolayer	and the plate,
Diagram 8:	Histogenesis of cerebellar cortex a cerebellar nuclei	

List of Histograms

Histo. No.	Title	Page No.
Histogram 1:	Showing the mean number of cells in H&E stained sections of groups.	different
Histogram 2:	Showing the mean optical density granules in Toluidine blue stained in different groups.	d sections
Histogram 3:	Showing the mean optical desynaptophysin in different groups.	•
Histogram 4:	Showing the mean number of astrocerebellar cortex in GFAP seedifferent groups	ctions of
Histogram 5:	Showing the mean number of astr GFAP sections of the cerebellar m different groups	nedulla in

Tist of Abbreviations

Abb.	Full term
ADSCs	Adipose tissue derived stem cells
	Adipose tissue derived mesenchymal stem
	cells
<i>AMPK</i>	Adenosine monophosphate activated protein
	kinase
ANOVA	One-way analysis of variance
Anti-GFAP	Anti-cow glial fibrillary acidic protein
	Blood brain barrier
<i>BM</i>	Bone marrow
BM-MSCs	Bone marrow-derived MSCs
CNS	Central nervous system
<i>DAB</i>	$Diamin obenzidine\ tetrahydrochloride$
DCN	Deep cerebellar nuclei
<i>DM</i>	Diabetes mellitus
<i>GFAP</i>	Glial fibrillary acidic protein
H&E	Haematoxylin and eosin
<i>HPF</i>	High power field
HRP	Horse-radish peroxidase
<i>IL-6</i>	Interleukin 6
<i>MDA</i>	Malondial de hyde
MSCs	Mesenchymal stem cells
<i>PBS</i>	Phosphate buffered saline
<i>PS</i>	Pial surface
	Standard deviation
<i>SNAREs</i>	Soluble NSF- attachment receptors
<i>SPSS</i>	Statistical Package for the Social Sciences
	Synaptobrevin II
<i>TEM</i>	Transmission electron microscopic
TNF - α	Tumor necrosis factor- α
<i>VN</i>	Ventricular neuroepithelium

Abstract

Introduction: Aging is a normal physiological process that affects all organs in the body including the cerebellum. Metformin is an anti-diabetic drug that is used in some age-related diseases. Regenerative medicine using adipose tissue derived mesenchymal stem cells (ADMSCs) is an emerging promising strategy.

Aim: to compare between the role of ADMSCs and metformin on the agerelated structural changes of the cerebellum in female albino rats.

Materials and methods: The study included 55 female rats of different ages. They were divided into three groups according to their ages: Group I (Adult rats, from 4-6 months), Group II (Old rats, from 12-18 months) and Group III (Senile rats, from 24-28 months). Group II and Group III were further subdivided into three subgroups, *Subgroup a*: rats were left without treatment. *Subgroup b*: rats were given a single dose of 1X10⁶ ADMSCs via tail vein. *Subgroup c*: Rats received 300mg/kg metformin/day orally. Rats were sacrificed after four weeks. The cerebella were collected and processed for H&E, toluidine blue, immuno-histochemical stains using glial fibrillary acidic protein (GFAP) and synaptophysin. Transmission electron microscopic examination and histomorphometric studies were also performed.

Results: Light and electron microscopic examination of the cerebellum of non-treated old and senile rats (subgroups IIa and IIIa) revealed age-related structural changes compared to group I. Purkinje cells showed degenerative changes with a significant decrease in their mean number. Significant decrease in the mean optical density of Nissl granules was also noticed. The granular layer showed small widely separated granule cells with an apparent decrease in their number. A significant decrease in the mean number of astrocytes in GFAP sections and the mean optical density of synaptophysin reaction was also noticed in the non-treated subgroups (IIa and IIIa) compared to adult group I. Degeneration of axons and atrophy of myelin sheath were also noticed in the medulla of non-treated rats. The structural changes were more obvious in subgroup IIIa compared to subgroup IIa. In ADMSCs treated subgroups (IIb and IIIb), significant improvement of these changes was more noticeable compared to the corresponding metformin treated subgroups (IIc and IIIc) which was confirmed by statistical analysis.

Conclusion: ADMSCs were more effective than metformin in ameliorating some age-related structural changes of the cerebellum in female albino rats.

Keywords: Aging, Cerebellum, Stem Cells, Metformin, GFAP, synaptophysin, TEM.

Introduction

The cerebellum is one of the vital organs that are affected by aging. The cerebellum has several functions not only related to equilibrium, postural control, and motor coordination, but it is also involved in cognitive functions as learning and memory (Sokolov et al., 2017 and Schmahmann, 2019).

Aging is a gradual process of natural developmental changes that begins in early adulthood. It occurs as result of the continuous accumulation of various deleterious changes in tissues and cells, which increases the susceptibility to diseases and death (Harman, 2006). The aging process results in deterioration of learning abilities and memory skills resulting in progressive decline in the cognitive functions (Cristofol et al., 2012).

Recently, many studies have focused on the complex etiology, molecular pathways and mechanisms of the normal aging process and the resulting neuronal cell death. The aim has been to discover new drug targets that could be used as antiaging agents (Rao et al., 2017).

Adipose tissue-derived Mesenchymal cells stem (ADMSCs) have received attention as a promising source of cells for regenerative medicine. Adipose tissue contains hundreds of thousands of MSCs in each gram of fat (Park et al., 2013). Some researchers have reported that cell therapy might be able to restore the lost cells and enhances the neuronal

regeneration. However, the exact mechanisms involved in determining therapeutic capacity remain unknown (Chan et al., 2014). Recently, new authors suggest that MSCs show therapeutic efficacy in different age-related degenerative diseases (Fabian et al., 2017).

Metformin is a widely used anti-diabetic drug. It improves glucose utilization, reduces hyperglycemia, inhibits gluconeogenesis, and decreases the utilization of the free fatty acids and serum lipids. Metformin also contributes to the prevention of some forms of human cancer. It has also cardioprotective effects (Anisimov et al., 2008). This therapeutic profile of metformin supports its use for the diseases related to the age and longevity (Novelle et al., 2016).