

FACULTY OF ENGINEERING

Electrical Power and Machines Engineering

Combined power supply system and attitude control system for satellites

A Thesis submitted in partial fulfilment of the requirements of the degree of Master of Science in Electrical Engineering

(Electrical Power and Machines Engineering)

by **Ahmed Ismail Saad Ibrahim**

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Military Technical college, 2007

Supervised By

Prof. Dr. Naggar Hassan Saad Dr. Mohamad Ezzat Abel-Rahman

Cairo - (2020)

Supervisors committee

Name: Ahmed Ismail Saad Ibrahim

Thesis title: Combined power supply system and attitude control system

for satellites

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

Signature

1. Prof. Dr. Naggar Hassan Saad

Electrical Power and Machines Dept. Faculty of Engineering, Ain Shams University

2. Dr. Mohamad Ezzat Abel-Rahman

Electrical Power and Machines Dept. Faculty of Engineering, Ain Shams University

Examiners committee

Name: Ahmed Ismail Saad Ibrahim

<u>Thesis title:</u> Combined power supply system and attitude control system

for satellites

<u>Degree:</u> Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, Title and Affiliation

Signature

1. Prof. Dr. Said Wahsh

Electronic Research Institute

2. Prof. Dr. Mostfa Ibrahim Marei

Electrical Power and Machines Dept. Faculty of Engineering Ain Shams University

3. Prof. Dr. Naggar Hassan Saad

Electrical Power and Machines Dept. Faculty of Engineering, Ain Shams University

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Ahmed Ismail Saad Ibrahim

5	5	į	9	r	lá	1	tı	u	ľ	E)							

Date: April 2020

Researcher Data

Name : Ahmed Ismail Saad Ibrahim

Date of birth : 7/6/1985

Place of birth : Menoufia

Last academic degree : Bachelor of Engineering

Field of specialization : Communication and Electronic.

University issued the degree : Military Technical College

Date of issued degree : 2007

Current job : Officer Engineer

Acknowledgement

All favor is due to Allah, the most Merciful, and the lord of the worlds, who taught human what he doesn't know. I am extremely grateful to Allah for giving me the power to accomplish this work.

I would like to thank **Prof. Dr. Naggar Hassan Saad**, one of my two thesis supervisors, for his invaluable supervision directions, and supervision work, his wise advice, his patience and for allowing me the opportunity to develop this work.

Also, I would like to thank **Dr. Mohamad Ezzat Abel-Rahman**, my other thesis supervisor, for his valuable supervision guidance and wise advices during this research work and for his continuous patience in reviewing the drafts during the preparation of this thesis.

Finally, I have to thank my family for the help and support. I regard the encouragement of my parents, my wife and my friends, to whom I dedicate this thesis.

Table of Contents

Abstract.		X
Chapter 1	INTRODUCTION	1 -
1.1	Introduction	1 -
1.1.1	Types of satellites orbits	3 -
1.1.2	Low Earth Orbit (LEO) "system under study"	4 -
1.1.3	Middle-Earth-Orbit (MEO)	4 -
1.1.4	Highly Elliptical Orbit (HEO)	5 -
1.1.5	Geostationary Earth Orbit (GEO)	5 -
1.1.6	LEO Satellites applications:	6 -
1.1.7	Advantages of LEO satellites:	7 -
1.1.8	Disadvantages of LEO satellites:	7 -
1.2	Background	8 -
1.3	Problem Statement	13 -
1.4	Objectives	13 -
1.5	Thesis Outline	14 -
Chapter 2	LITERATURE REVIEW	16 -
2.1.	Satellite Power Supply System	16 -
2.1.1.	Introduction to PSS	16 -
2.1.2.	PSS structure	18 -
2.1.3.	Types of Spacecraft Primary Power Supply Subsystems (PPSS).	19 -
2.1.4.	Energy storage devices	21 -
2.1.5.	Types of Batteries used for space applications	22 -
2.1.6.	Main features of each battery	23 -
2.1.6.	Silver zinc cells	23 -
2.1.6.2	2 Lithium cells	23 -
2.1.6.3	Nickel cadmium cells	24 -
2.1.6.4	Nickel hydrogen cells	24 -
2.1.6.	5 Lithium Ion cell	24 -
2.1.6.0	Battery usage for energy storage	24 -
2.1.7.	Flywheels usage for energy storage	27 -

2.1.8.	Technology benefits	27 -
2.2. Sa	ntellite Attitude Control System	29 -
2.2.1.	Introduction to satellite attitude control	29 -
2.2.2.	Attitude accuracy	31 -
2.2.3.	Attitude stability	31 -
2.2.4.	Response performances	32 -
2.2.5.	Factors affecting ACS configuration	33 -
2.2.6.	Functional relationships between ACS and other subsystems	34 -
2.2.7.	Satellite attitude control by flywheels	34 -
2.2.7.1	Open loop attitude control	35 -
2.2.7.2	Closed loop attitude control	36 -
2.3. At	ttitude and Power System Combination	37 -
2.3.1.	Introduction	37 -
2.3.2.	Basic control loop for attitude and Power System Combination	37 -
2.4. Cl	PACS principles and modes of operation	38 -
2.5. Po	ower systems control techniques	42 -
2.5.1.	Scalar control	42 -
2.5.2.	Vector control	44 -
2.5.3.	Comparison between scalar and vector control	45 -
2.5.4.	Field oriented control (FOC)	
2.5.5.	Advantages and dis advantages of FOC	47 -
2.5.6.	Direct torque control	47 -
2.5.7.	Comparison between FOC and DTC	48 -
2.6. Ty	ypes of Attitude Control and Stabilization	
2.6.1.	Passive attitude control	
2.6.1.1	Gravity gradient	
2.6.1.2	Spin stabilization	
2.6.2.	Active attitude control	
2.6.2.1	Mass expulsion	
2.6.2.2	Control moment gyro	
2.6.2.3	Flywheels	53 -

2.7. Co	omparison between attitude control actuators	55 -
Chapter 3	CPACS MATHEMATICAL MODELLING	56 -
3.1. In	troduction	56 -
3.1.1.	Simulation concept	57 -
3.2. Co	ontrol Algorithm	58 -
3.3. Sy	ystem Model	59 -
3.3.1.	Electrical system model composition	60 -
3.3.2.	Mechanical system model Composition	62 -
3.3.3.	Motor / generator operation:	63 -
3.3.4.	Charge loop control:	64 -
3.3.5.	Charge reduction and discharge loop control:	65 -
3.3.6.	DC bus controller of charge/discharge loops:	
3.3.7.	CPACS Simulink model:	68 -
Chapter 4	CPACS MODEL PERFORMANCE	70 -
4.1. Si	imulation Assumptions and Parameters	70 -
4.2. C	PACS Model Performance	71 -
4.2.1. 1×10 ⁻⁴ 1	First case at flywheels initial speed 2000 rad/sec disturbance torq	•
4.2.2. 1×10 ⁻⁴ 1	Second case at flywheels initial speed 5500 rad/sec disturbance to N.m	
4.2.3. Td2 = 0	Third case at flywheels initial speed 2000 rad/sec and disturbance 0.01 N.m	
4.2.4. 0.01 N.	Forth case at flywheels initial speed 5500 rad/sec and disturbance m - 78 -	e Td2 =
4.3. D	iscussion	79 -
Chapter 5	CONCLUSIONS AND FUTURE WORK	80 -
5.1. Co	onclusions	80 -
5.2. Fu	uture Work	81 -
5.2.1.	Power bus	81 -
5.2.2.	Attitude determination	81 -
References		82 -
List of Pub	lications	88 -

List of Figures

Fig. No.	List of Figures	Page
Fig. 1.1	Types of satellites orbits	4
Fig. 1.2	Flywheel energy storage system	11
Fig. 2.1	PSS Structure	19
Fig. 2.2	spacecraft three-types of primary power sources	19
Fig. 2.3	Relation between the electric power level and mission duration	
	for Different PPS sources estimation	21
Fig. 2.4	Some NASA flight missions Battery chemistries	26
Fig. 2.5	General attitude control system block diagram	29
Fig. 2.6	Factors affecting ACS Configuration	33
Fig. 2.7	Functional Relationships between ACS and other	
	subsystems	34
Fig. 2.8	Basic open control loop	35
Fig. 2.9	Basic attitude control loop	36
Fig. 2.10	DC bus and attitude control loop	38
Fig. 2.11	High level block diagram of a portion of a spacecraft power	
	system and distribution	39
Fig. 2.12	Double counter rotating flywheels	41
Fig. 2.13	Structure of magnetically suspended flywheel	41
Fig. 2.14	Power system control techniques	42
Fig. 2.15	Scalar control block diagram	43
Fig. 2.16	FOC block diagram	46
Fig. 2.17	DTC block diagram	48
Fig. 2.18	A dumbbell shaped satellite in an orbit around Earth	50
Fig 210	Snin stabilized Spacecraft	51

Fig. 2.20	Satellite gas engine	52
Fig. 2.21	Control moment gyro	53
Fig. 2.22	Flywheels system for satellite attitude control	54
Fig. 3.1	six momentum flywheels for 3-axis attitude control	56
Fig. 3.2	PM synchronous motor/generator	59
Fig. 3.3	CPACS model configuration	60
Fig. 3.4	Electrical model	63
Fig. 3.5	Charge loop control	65
Fig. 3.6	Discharge loop control	66
Fig. 3.7	Charge/discharge loop control	67
Fig. 3.8	Complete dc bus and single axis attitude control system	
	model	68
Fig. 4.1	DC bus voltage during light and shadow	72
Fig. 4.2	Solar array current	72
Fig. 4.3	Commanded charge current and flywheels current	73
Fig. 4.4	Flywheels, solar array and load current	73
Fig. 4.5	Flywheels, solar array, load and dc currents	73
Fig. 4.6	Platform angle	74
Fig. 4.7	Flywheels speed at initial speed 2000 rad/sec	75
Fig. 4.8	DC bus voltage during light and shadow	75
Fig. 4.9	Flywheels initial speed 5500 rad/sec	75
Fig. 4.10	Platform angle at flywheel speed equal 5500 rad/sec	7 6
Fig. 4.11	DC bus voltage during light and shadow	76
Fig. 4.12	flywheels speed at initial speed 2000 rad/sec and $T_{\rm d2}$ = 0.01	
	N.m	77
Fig. 4.13	Platform angle at flywheel speed 2000 rad/sec	77
Fig. 4.14	DC bus voltage during light and shadow	78
Fig. 4.15	flywheels speed at initial speed 5500 rad/sec and $T_{\rm d2}$ = 0.01	
	N.m	78
Fig. 4.16	Platform angle at flywheel initial speed 5500 rad/sec and Td2=0.01 N.m	78

List of Tables

Table No.	List of Tables	Page No
Table 1.1	Characteristics of common orbits	3
Table 2.1	Primary battery types	22
Table 2.2	Secondary Battery types	23
Table 2.3	Comparison between flywheels and traditional battery	28
Table 2.4	Combined Power and attitude control Modes of Operation	39
Table 2.5	Scalar and vector control	45
Table 2.6	Advantages and Dis advantages of FOC	47
Table 2.7	Comparison between FOC and DTC	48
Table 2.8	Attitude actuators specifications	55
Table 4.1	Simulation Parameters	70

List of **Abbreviations**

ACFS : Attitude Control Flight Software

ACS : Attitude Control System

AOCE : Attitude Orbit Control Electronics

BMS : Battery Management System

CEACS: Combined Energy and Attitude Control System
CPACS: Combined Power and Attitude Control System

CR : Contractor Report
CMG : Control Moment Gyro
DTC : Direct Torque Cotrol

DC : Direct Current

EPS : Electrical Power Subsystem

FDIR : Fault Detection Isolation and Recovery

FES : Flywheel Energy StorageFOC : Field-Oriented ControlGEO : Geostationary Orbit

GNN : Guidance Navigation and Control

GPS : Global Positioning System
GRC : Glenn Research Center

HEO: Highly Elliptical Orbit HWIL: Hardware In the Loop

IPACS: Integrated Power and Attitude Control System

ISS : International Space Station

LCO : Lithium Cobalt Oxide

LEO : Low Earth Orbit

LMO : Lithium Manganese Oxide

MEO : Medium Earth Orbit

PMSM: Permanent Magnet Synchronous Motor

PSS : Power Supply System

PPSS: Primary Power Supply System
PTC: Positive Thermal Coefficient

PV : Photovoltaic

RTG : Radioisotope Thermal Generators

SA : Solar Array

List of **Symbols**

I^{*}_{charge} Commanded charge current (A)

 $I_{DC} \qquad \qquad DC \text{ bus cureent (A)} \\ I_{Load} \qquad \qquad Load \text{ current (A)} \\ I_{flywheel} \qquad \qquad Flywheel \text{ current (A)}$

i_{inv} Flywheel inverter current (A)

 $I_{s/a}$ Solar array current (A) i_{dS}^{r} Rotor d-axis current (A) i_{qs}^{r} Rotor q-axis current (A)

J Rotor polar moment of inertia (kg • m2).

J₀ The total inertia of mechanical plant (Kg. m²)

L_d d-axis inductance (H). L_d q-axis inductance (H).

P Number of poles

p_{ele} Flywheel electrical power (W)
 p_{inv} Flywheel inverter power (W)
 p_{mech} Flywheel mechanical power (W)

 T_d Disturbance torque (N.m)

T_e Electromagnetic torque (N • m)

 V_{DC} Voltage of DC bus (V)

 λ_{af} Rotor magnet flux linkage (V.s)

 ω_{r} Speed of rotor (rad/sec.)

 $\omega_{r,mech}$ Mechanical rotor speed (rad/s) $\omega_{r,elec}$ Electrical rotor speed (rad/s)

 θ The rotation angle of the air table (deg.)

Variable * Commanded value of variable

Abstract

Flywheel power systems are now seen as a technology that can be used in various applications, including low-earth space satellite orbits, pulse transmission for hybrid electric vehicles and many other applications. In consideration of the energy storage feature, a flywheel device has great advantages over chemical batteries for Low Earth Orbit (LEO) satellites: lifespan, density of power, short charge time, wide operational temperature band, and deep depth of discharge. Flywheel systems have significant advantages over chemical batteries also it can be used to control the spacecraft attitude. The combination of energy and attitude control is a reasonable solution to improve space missions for satellites. Double counter-rotating flywheels mounted on an air table are introduced in this thesis to execute the control system of combined power and single axis attitude control. The system control technique of integrated power and attitude control could be implemented based either on a speed control mode or on a torque control mode. The control algorithm's method is field orientation control. This method offers the flywheel motor / generator with precise and high bandwidth torque control by controlling rotor reference frame currents that are dc in steady-state. The Permanent magnet synchronous motor/generator is controlled by the direction of the field. The current rotational frame of the daxis is ordered to zero and the q-axis current component changes to maintain the required dc bus level and commanded attitude angle. MATLAB Simulink was used to model the combined power and single-axis attitude control system using two similar flywheels. Furthermore, different cases and different modes of operation are presented which showed that flywheels behavior changed according to different operation.